Necessary Conditions for Existence of Some Designs in Polynomial Metric Spaces

In this paper we consider designs in polynomial metric spaces with relatively small cardinalities (near to the classical bounds). We obtain restrictions on the distributions of the inner products of points of such designs. These conditions turn out to be strong enough to ensure obtaining nonexistence results already for the first open cases.

[1]  S. G. Hoggar,et al.  t-Designs in Projective Spaces , 1982, Eur. J. Comb..

[2]  Béla Bajnok Constructions of Spherical 3-Designs , 1998, Graphs Comb..

[3]  Paul M. Terwilliger A characterization of P- and Q-polynomial association schemes , 1987, J. Comb. Theory, Ser. A.

[4]  Philippe Delsarte,et al.  Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..

[5]  C. R. Rao,et al.  Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .

[6]  Charles F. Dunkl,et al.  Discrete quadrature and bounds on $t$-designs. , 1979 .

[7]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[8]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  Vladimir I. Levenshtein,et al.  On Upper Bounds for Code Distance and Covering Radius of Designs in Polynomial Metric Spaces , 1995, J. Comb. Theory, Ser. A.

[11]  Ryuzaburo Noda On Orthogonal Arrays of Strength 4 Achieving Rao's Bound , 1979 .

[12]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[13]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[14]  Danyo Danev,et al.  On Maximal Codes in Polynominal Metric Spaces , 1997, AAECC.

[15]  V. Levenshtein Designs as maximum codes in polynomial metric spaces , 1992 .

[16]  Peter Boyvalenkov Computing distance distributions of spherical designs , 1995 .

[17]  A. Neumaier Combinatorial configurations in terms of distances , 1981 .

[18]  Eiichi Bannai,et al.  Tight t-Designs and Squarefree Integers , 1989, Eur. J. Comb..

[19]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[20]  R. M. Damerell,et al.  Tight Spherical Disigns, II , 1980 .

[21]  N. J. A. Sloane,et al.  McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..

[22]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[23]  Eiichi Bannai,et al.  On tight $t$-designs in compact symmetric spaces of rank one , 1985 .

[24]  Svetla Nikova,et al.  Nonexistence of Certain Spherical Designs of Odd Strengths and Cardinalities , 1999, Discret. Comput. Geom..

[25]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .