Helfrich-Hurault elastic instabilities driven by geometrical frustration

The Helfrich-Hurault (HH) elastic instability is a well-known mechanism behind patterns that form as a result of strain upon liquid crystal systems with periodic ground states. In the HH model, layered structures undulate and buckle in response to local, geometric incompatibilities, in order to maintain the preferred layer spacing. Classic HH systems include cholesteric liquid crystals under electromagnetic field distortions and smectic liquid crystals under mechanical strains, where both materials are confined between rigid substrates. However, richer phenomena are observed when undulation instabilities occur in the presence of deformable interfaces and variable boundary conditions. Understanding how the HH instability is affected by deformable surfaces is imperative for applying the instability to a broader range of materials. In this review, we re-examine the HH instability and give special focus to how the boundary conditions influence the mechanical response of lamellar systems to geometrical frustration. We use lamellar liquid crystals confined within a spherical shell geometry as our model system. Made possible by the relatively recent advances in microfluidics within the past 15 years, liquid crystal shells are composed entirely of fluid interfaces and have boundary conditions that can be dynamically controlled at will. We examine past and recent work that exemplifies how topological constraints, molecular anchoring conditions, and boundary curvature can trigger the HH instability in liquid crystals with periodic ground states. We then end by identifying similar phenomena across a wide variety of materials, both biological and synthetic. With this review, we aim to highlight that the HH instability is a generic and often overlooked response of periodic materials to geometrical frustration.

[1]  R. M. Parker,et al.  Cellulose photonic pigments , 2021, Nature Communications.

[2]  M. Dijkstra,et al.  A generalized density-modulated twist-splay-bend phase of banana-shaped particles , 2021, Nature Communications.

[3]  N. Katsonis,et al.  Light-Fueled Nanoscale Surface Waving in Chiral Liquid Crystal Networks , 2021, ACS applied materials & interfaces.

[4]  P. Zaslansky,et al.  Dynamics of topological defects and structural synchronization in a forming periodic tissue , 2021 .

[5]  G. R. Luckhurst,et al.  Biaxiality-driven twist-bend to splay-bend nematic phase transition induced by an electric field , 2020, Science Advances.

[6]  M. Dijkstra,et al.  Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases , 2020, Science.

[7]  K. Bishop,et al.  Swelling Cholesteric Liquid Crystal Shells to Direct the Assembly of Particles at the Interface. , 2020, ACS nano.

[8]  B. Davidovitch,et al.  Mesoscale structure of wrinkle patterns and defect-proliferated liquid crystalline phases , 2020, Proceedings of the National Academy of Sciences.

[9]  R. M. Parker,et al.  Visual Appearance of Chiral Nematic Cellulose‐Based Photonic Films: Angular and Polarization Independent Color Response with a Twist , 2019, Advanced materials.

[10]  V. S. R. Jampani,et al.  Realignment of Liquid Crystal Shells Driven by Temperature-Dependent Surfactant Solubility , 2019, Langmuir : the ACS journal of surfaces and colloids.

[11]  N. Katsonis,et al.  Dynamic Diffractive Patterns in Helix-Inverting Cholesteric Liquid Crystals , 2019, ACS applied materials & interfaces.

[12]  T. Lopez-Leon,et al.  Temperature-driven anchoring transitions at liquid crystal / water interfaces. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[13]  N. Abbott,et al.  Amphiphile-Induced Phase Transition of Liquid Crystals at Aqueous Interfaces. , 2018, ACS applied materials & interfaces.

[14]  Anjali Sharma,et al.  Influence of head group and chain length of surfactants used for stabilising liquid crystal shells , 2018, Liquid Crystals.

[15]  V. Capasso An Introduction to Random Currents and Their Applications , 2018 .

[16]  A. Bobrovsky,et al.  Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics , 2018, Advanced Optical Materials.

[17]  R. M. Parker,et al.  The Self‐Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance , 2018, Advanced materials.

[18]  Shu Yang,et al.  Shaping nanoparticle fingerprints at the interface of cholesteric droplets , 2018, Science Advances.

[19]  E. Zussman,et al.  Structure Evolution and Drying Dynamics in Sliding Cholesteric Cellulose Nanocrystals. , 2018, The journal of physical chemistry letters.

[20]  Ronald G. Larson,et al.  In Retrospect: Twenty years of drying droplets , 2017, Nature.

[21]  Daniel A. Beller,et al.  Elastocapillary Driven Assembly of Particles at Free-Standing Smectic-A Films. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[22]  Thomas Machon Contact topology and the structure and dynamics of cholesterics , 2017, 1706.09982.

[23]  S. Vignolini,et al.  Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets , 2017, Advanced materials.

[24]  A. Yodh,et al.  Deposition and drying dynamics of liquid crystal droplets , 2017, Nature Communications.

[25]  Eleni Katifori,et al.  The smectic order of wrinkles , 2017, Nature Communications.

[26]  S. Ramaswamy,et al.  Hydrodynamic instabilities in active cholesteric liquid crystals , 2017, The European Physical Journal E.

[27]  R. M. Parker,et al.  Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry , 2016, ACS nano.

[28]  N. Abbott,et al.  Design of Responsive and Active (Soft) Materials Using Liquid Crystals. , 2016, Annual review of chemical and biomolecular engineering.

[29]  B. Davidovitch,et al.  Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets , 2016, Proceedings of the National Academy of Sciences.

[30]  Olivier Dauchot,et al.  Waltzing route toward double-helix formation in cholesteric shells , 2015, Proceedings of the National Academy of Sciences.

[31]  Clemens Liedel,et al.  Reversible Switching of Block Copolymer Nanopatterns by Orthogonal Electric Fields. , 2015, Small.

[32]  A. Bobrovsky,et al.  Electroinduced Diffraction Gratings in Cholesteric Polymer with Phototunable Helix Pitch , 2015 .

[33]  D. A. Vega,et al.  Wrinkles and splay conspire to give positive disclinations negative curvature , 2015, Proceedings of the National Academy of Sciences.

[34]  M. M. Telo da Gama,et al.  Wetting of cholesteric liquid crystals , 2015, The European Physical Journal E.

[35]  G. Barbero,et al.  Anchoring transitions and periodic deformations in nematic slabs , 2015 .

[36]  M. Bowick,et al.  Thick smectic shells , 2015, 1504.01448.

[37]  A. Rey,et al.  Structure and dynamics of biological liquid crystals , 2014 .

[38]  Slobodan Zumer,et al.  Topological zoo of free-standing knots in confined chiral nematic fluids , 2014, Nature Communications.

[39]  J. K. Vij,et al.  Nematic twist-bend phase with nanoscale modulation of molecular orientation , 2013, Nature Communications.

[40]  S. Guido,et al.  Dynamic flow behaviour of surfactant vesicles under shear flow: role of a multilamellar microstructure , 2013 .

[41]  Reza Abbasi,et al.  Chemical and biological sensing using liquid crystals , 2013, Liquid crystals reviews.

[42]  R. Zentel,et al.  Tuning the defect configurations in nematic and smectic liquid crystalline shells , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Miha Ravnik,et al.  Geometrical frustration of chiral ordering in cholesteric droplets , 2012 .

[44]  A. Fernández-Nieves,et al.  Bivalent defect configurations in inhomogeneous nematic shells , 2012, 1211.4622.

[45]  N. Abbott,et al.  Influence of specific anions on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[46]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[47]  Daeyeon Lee,et al.  Controlling the stability and size of double-emulsion-templated poly(lactic-co-glycolic) acid microcapsules. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[48]  M. B. Amar,et al.  Thin nematic films: Anchoring effects and stripe instability revisited , 2012, 1206.4859.

[49]  Hunter King,et al.  Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities , 2012, Proceedings of the National Academy of Sciences.

[50]  R. Zentel,et al.  Towards tunable defect arrangements in smectic liquid crystal shells utilizing the nematic–smectic transition in hybrid-aligned geometries , 2012 .

[51]  Alberto Fernandez-Nieves,et al.  Frustrated nematic order in spherical geometries , 2011 .

[52]  O. Lavrentovich,et al.  Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals , 2011, Proceedings of the National Academy of Sciences.

[53]  Michel Mitov,et al.  Color selectivity lent to a cholesteric liquid crystal by monitoring interface-induced deformations , 2011 .

[54]  A. Fernández-Nieves,et al.  Drops and shells of liquid crystal , 2011 .

[55]  M. Ben Amar,et al.  Instability patterns in ultrathin nematic films: Comparison between theory and experiment , 2010, 1010.0832.

[56]  A. Rey Liquid crystal models of biological materials and processes , 2010 .

[57]  Mohan Srinivasarao,et al.  Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles , 2009, Science.

[58]  R. E. Rosensweig,et al.  Modulated phases: review and recent results. , 2009, The journal of physical chemistry. B.

[59]  R. Stannarius,et al.  Corona patterns around inclusions in freely suspended smectic films , 2009, The European physical journal. E, Soft matter.

[60]  N. Abbott,et al.  Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases , 2008 .

[61]  M. A. Bates Nematic ordering and defects on the surface of a sphere: a Monte Carlo simulation study. , 2008, The Journal of chemical physics.

[62]  J. Meunier,et al.  Nematic pancakes revisited. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[63]  R. Mosseri Geometrical frustration and defects in condensed matter systems , 2008 .

[64]  M. Matsen Undulation instability in block-copolymer lamellae subjected to a perpendicular electric field. , 2006, Soft matter.

[65]  I. Musevic,et al.  Colloids on free-standing smectic films , 2006, The European physical journal. E, Soft matter.

[66]  M. Roman,et al.  Parabolic focal conics in self-assembled solid films of cellulose nanocrystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[67]  D. Weitz,et al.  Monodisperse Double Emulsions Generated from a Microcapillary Device , 2005, Science.

[68]  J. Magda,et al.  Interfacial tension of a nematic liquid crystal/water interface with homeotropic surface alignment. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[69]  Ting Xu,et al.  Electric Field Alignment of Asymmetric Diblock Copolymer Thin Films , 2004 .

[70]  H. Yokoyama,et al.  Contribution of water droplets to defect array formation in water-in-cholesteric liquid crystal emulsions , 2003 .

[71]  N. Abbott,et al.  Active Control of the Anchoring of 4‘-Pentyl-4-cyanobiphenyl (5CB) at an Aqueous−Liquid Crystal Interface By Using a Redox-Active Ferrocenyl Surfactant , 2003 .

[72]  N. Abbott,et al.  Effect of Surfactant Structure on the Orientation of Liquid Crystals at Aqueous−Liquid Crystal Interfaces† , 2003 .

[73]  P. Olmsted,et al.  The effect of shear flow on the Helfrich interaction in lyotropic lamellar systems , 2002, The European physical journal. E, Soft matter.

[74]  G. Pereira Undulational instabilities of the columnar phase of diblock copolymers , 2002 .

[75]  N. Abbott,et al.  An Experimental System for Imaging the Reversible Adsorption of Amphiphiles at Aqueous−Liquid Crystal Interfaces , 2002 .

[76]  D. Andelman,et al.  Thin film diblock copolymers in electric field: Transition from perpendicular to parallel lamellae , 2001, cond-mat/0110282.

[77]  N. Clark,et al.  Alignment of liquid crystals with patterned isotropic surfaces. , 2001, Science.

[78]  C. Blanc,et al.  The confinement of smectics with a strong anchoring , 2001 .

[79]  Peter Lindner,et al.  Cylindrical intermediates in a shear-induced lamellar-to-vesicle transition , 2001 .

[80]  Y. Cohen,et al.  Deformation of Oriented Lamellar Block Copolymer Films , 2000 .

[81]  A. Zilman,et al.  Undulation instability of lamellar phases under shear: A mechanism for onion formation? , 1999 .

[82]  C. Blanc,et al.  Curvature walls and focal conic domains in a lyotropic lamellar phase , 1999 .

[83]  P. Fabre,et al.  Magnetic field induced instabilities of a doped lyotropic hexagonal phase , 1999 .

[84]  N. Abbott,et al.  Design of Surfaces for Patterned Alignment of Liquid Crystals on Planar and Curved Substrates , 1997 .

[85]  D. Roux,et al.  Freeze-fracture electron microscopy of sheared lamellar phase , 1996 .

[86]  P. Pieranski,et al.  The Anchoring of a Cholesteric Liquid Crystal at the Free Surface , 1996 .

[87]  Masao Doi,et al.  Shear-Induced Instability of the Lamellar Phase of a Block Copolymer , 1996 .

[88]  J. Géminard,et al.  Nonlinear Analysis of Stripe Textures in Hexagonal Lyotropic Mesophases , 1996 .

[89]  A. Onuki,et al.  Electric field effects and form birefringence in diblock copolymers , 1995 .

[90]  Paul Drzaic,et al.  Liquid Crystal Dispersions , 1995 .

[91]  A. Onuki,et al.  Dynamics of Undulation Instability in Lamellar Systems , 1995 .

[92]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[93]  Zhen‐Gang Wang,et al.  Response and instabilities of the lamellar phase of diblock copolymers under uniaxial stress , 1994 .

[94]  D. Roux,et al.  Effect of shear on a lyotropic lamellar phase , 1993 .

[95]  Amelia Carolina Sparavigna,et al.  Saddle-splay and periodic instability in a hybrid aligned nematic layer subjected to a normal magnetic field , 1992 .

[96]  G. Gompper,et al.  Ginzburg-Landau theory of aqueous surfactant solutions , 1992 .

[97]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[98]  J. Fournier,et al.  Focal conic faceting in smectic-A liquid crystals , 1991 .

[99]  F. Livolant,et al.  The highly concentrated liquid-crystalline phase of DNA is columnar hexagonal , 1989, Nature.

[100]  E. Helfand,et al.  Fluctuation effects in the theory of microphase separation in block copolymers , 1987 .

[101]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[102]  F. Livolant,et al.  Liquid crystalline phases given by helical biological polymers (DNA, PBLG and xanthan). Columnar textures , 1986 .

[103]  M. J. Bradshaw,et al.  The Frank constants of some nematic liquid crystals , 1985 .

[104]  M. Gharbia,et al.  Column undulation instability in a discotic liquid crystal , 1985 .

[105]  F. Livolant,et al.  The organization of cholesteric spherulites , 1984 .

[106]  S. Ben-abraham,et al.  Undulation instability under shear in smectic A liquid crystals , 1982 .

[107]  N. Clark,et al.  Elastic light scattering by smectic A focal conic defects , 1982 .

[108]  H. Brand,et al.  Hydrodynamics of cholesteric liquid crystals with impurities , 1981 .

[109]  J. Sadoc,et al.  A tentative description of the crystallography of amorphous solids , 1979 .

[110]  N. Clark,et al.  The parabolic focal conic : a new smectic a defect , 1977 .

[111]  G. Durand,et al.  Mechanical instabilities of smectic-A liquid crystals under dilative or compressive stresses , 1977 .

[112]  P. Gennes,et al.  Instabilities under mechanical tension in a smectic cylinder , 1976 .

[113]  O. Parodi,et al.  Covariant elasticity for smectics A , 1975 .

[114]  P. Keller,et al.  Ferroelectric liquid crystals , 1975 .

[115]  J. Delrieu Comparison between square, triangular, or one dimensional lattice of distortions in smectic A and cholesteric crystals for superposed strain and magnetic field of any directions , 1974 .

[116]  P. Pershan,et al.  Surface Polarity Induced Domains in Liquid Crystals , 1973 .

[117]  J. P. Hurault,et al.  Static distortions of a cholesteric planar structure induced by magnetic or ac electric fields , 1973 .

[118]  P. Gennes,et al.  Statistical properties of focal conic textures in smectic liquid crystals , 1973 .

[119]  M. Delaye,et al.  Buckling instability of the layers in a smectic-A liquid crystal , 1973 .

[120]  Noel A. Clark,et al.  Strain‐induced instability of monodomain smectic A and cholesteric liquid crystals , 1973 .

[121]  Robert B. Meyer,et al.  On the existence of even indexed disclinations in nematic liquid crystals , 1973 .

[122]  J. Hulin,et al.  Distorsions of a planar cholesteric structure induced by a magnetic field , 1972 .

[123]  Y. Bouligand,et al.  Recherches sur les textures des états mésomorphes - 1. Les arrangements focaux dans les smectiques : rappels et considérations théoriques , 1972 .

[124]  C. J. Grritsma,et al.  Electric-Field-Induced Texture Transformation and Pitch Contraction in a Cholesteric Liquid Crystal , 1971 .

[125]  C. J. Gerritsma,et al.  Periodic perturbations in the cholesteric plane texture , 1971 .

[126]  W. Helfrich,et al.  Electrohydrodynamic and Dielectric Instabilities of Cholesteric Liquid Crystals , 1971 .

[127]  W. Helfrich,et al.  DEFORMATION OF CHOLESTERIC LIQUID CRYSTALS WITH LOW THRESHOLD VOLTAGE , 1970 .

[128]  W. Helfrich,et al.  Erratum: Conduction‐Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations , 1969 .

[129]  M. Papoular,et al.  DISTORSION D''UNE LAMELLE NEMATIQUE SOUS CHAMP MAGNETIQUE , 1969 .

[130]  A. Saupe,et al.  On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals , 1969 .

[131]  D. Yoon,et al.  Control of Periodic Zigzag Structures of DNA by a Simple Shearing Method , 2017, Advanced materials.

[132]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[133]  A. Fernández-Nieves,et al.  Smectic shells , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[134]  Karl Kaiser,et al.  An European , 2004 .

[135]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[136]  O. D. Lavrentovich,et al.  Topological defects in dispersed words and worlds around liquid crystals, or liquid crystal drops , 1998 .

[137]  A. Leforestier,et al.  Condensed phases of DNA: Structures and phase transitions , 1996 .

[138]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[139]  M. Kleman Curved crystals, defects and disorder , 1989 .

[140]  D. Sornette Undulation instability in stripe domain structures of « bubble » material , 1987 .

[141]  M. Marcus Quasicrystalline behaviour and phase transition in cholesteric « blue » phase , 1981 .

[142]  R. Bartolino,et al.  Dislocation Effects on the Viscoelastic Properties of a Smectic A Liquid Crystal , 1977 .

[143]  F. C. Frank,et al.  I. Liquid crystals. On the theory of liquid crystals , 1958 .

[144]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[145]  G. Friedel,et al.  Les états mésomorphes de la matière , 1922 .

[146]  F. Grandjean,et al.  Observations géométriques sur les liquides à coniques focales , 1910 .