Magnetic i-MXenes: a new class of multifunctional two-dimensional materials.

Based on density functional theory calculations, we investigated two-dimensional in-plane ordered MXenes (i-MXenes), focusing particularly on their magnetic properties. It has been observed that robust two-dimensional magnetism can be achieved by alloying nonmagnetic MXenes with magnetic transition metal atoms. Moreover, both the magnetic ground states and the magnetocrystalline anisotropy energy of i-MXenes can be effectively manipulated by strain, indicating a strong piezomagnetic effect. Further studies on the transport properties reveal that i-MXenes provide an interesting platform to realize large thermoelectric response, antiferromagnetic topological insulators, and spin-gapless semiconductors. Thus, i-MXenes are a new class of multifunctional two-dimensional magnetic materials which are promising for future spintronic applications.

[1]  P. Nachtigall,et al.  High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes , 2016 .

[2]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[3]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[4]  K. Esfarjani,et al.  Insights into exfoliation possibility of MAX phases to MXenes. , 2018, Physical chemistry chemical physics : PCCP.

[5]  M. Barsoum,et al.  Electronic properties of freestanding Ti3C2Tx MXene monolayers , 2016 .

[6]  R. Drautz,et al.  High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides. , 2012, Physical chemistry chemical physics : PCCP.

[7]  Gang Zhang,et al.  Cr2TiC2-based double MXenes: novel 2D bipolar antiferromagnetic semiconductor with gate-controllable spin orientation toward antiferromagnetic spintronics. , 2018, Nanoscale.

[8]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[9]  A. Freeman,et al.  Validity of the force theorem for magnetocrystalline anisotropy , 1996 .

[10]  Y. Shin,et al.  Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds , 2017, Scientific Reports.

[11]  Weiwei Sun,et al.  Computational Discovery and Design of MXenes for Energy Applications: Status, Successes, and Opportunities. , 2019, ACS applied materials & interfaces.

[12]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[13]  Jun Lu,et al.  Theoretical and Experimental Exploration of a Novel In-Plane Chemically Ordered (Cr2/3M1/3)2AlC i-MAX Phase with M = Sc and Y , 2017 .

[14]  I. Opahle,et al.  High-throughput design of 211−M2AX compounds , 2019, Physical Review Materials.

[15]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[16]  Georg K. H. Madsen,et al.  High-throughput study of the structural stability and thermoelectric properties of transition metal silicides , 2013 .

[17]  W. Kang,et al.  Manipulation of electronic and magnetic properties of M$_2$C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains , 2014, 1401.6259.

[18]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[19]  Omar Besbes,et al.  Microscopic origin of ferromagnetism in the trihalides CrCl3 and CrI3 , 2019, Physical Review B.

[20]  A. Mihai,et al.  Anomalous Hall effect in noncollinear antiferromagnetic Mn3NiN thin films , 2019, PHYSICAL REVIEW MATERIALS.

[21]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[22]  P. Nachtigall,et al.  New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity , 2016 .

[23]  Klaus Koepernik,et al.  High-Throughput Screening and Automated Processing toward Novel Topological Insulators. , 2018, The journal of physical chemistry letters.

[24]  Jiadong Zang,et al.  Giant perpendicular magnetic anisotropy in Fe/III-V nitride thin films , 2018, Science Advances.

[25]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[26]  Xiao Liang,et al.  Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. , 2015, Angewandte Chemie.

[27]  M. Farle,et al.  Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds , 2019, Chemistry of Materials.

[28]  T. Jungwirth,et al.  Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet. , 2016, Physical review letters.

[29]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[30]  J. Caro,et al.  A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. , 2017, Angewandte Chemie.

[31]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[32]  Lars Hultman,et al.  Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering , 2017, Science Advances.

[33]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[34]  Sang-Hoon Park,et al.  Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance , 2017, Advanced materials.

[35]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[36]  Liang Dong,et al.  Tunable Magnetism and Transport Properties in Nitride MXenes. , 2017, ACS nano.

[37]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[38]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[39]  Yugui Yao,et al.  High throughput screening for two-dimensional topological insulators , 2018, 2D Materials.

[40]  Feng Liu,et al.  Large-Gap Quantum Spin Hall State in MXenes: d-Band Topological Order in a Triangular Lattice. , 2016, Nano letters.

[41]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[42]  Hongjun Xiang,et al.  Effects of spin‐orbit coupling on magnetic properties of discrete and extended magnetic systems , 2008, J. Comput. Chem..

[43]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[44]  Jun Lu,et al.  Origin of Chemically Ordered Atomic Laminates ( i-MAX): Expanding the Elemental Space by a Theoretical/Experimental Approach. , 2018, ACS nano.

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  Yury Gogotsi,et al.  Antibacterial Activity of Ti₃C₂Tx MXene. , 2016, ACS nano.

[48]  Fei Wang,et al.  Theoretical Prediction and Synthesis of (Cr2/3Zr1/3)2AlC i-MAX Phase. , 2018, Inorganic chemistry.

[49]  Alan J. Heeger,et al.  Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules. , 2012, Journal of the American Chemical Society.

[50]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[51]  I. Opahle,et al.  Stability predictions of magnetic M2AX compounds , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  W. C. Martin Table of Spin-Orbit Energies for p-Electrons in Neutral Atomic (core)np Configurations. , 1971, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[53]  L. Nazar,et al.  Interwoven MXene Nanosheet/Carbon‐Nanotube Composites as Li–S Cathode Hosts , 2017, Advanced materials.

[54]  Yury Gogotsi,et al.  The Rise of MXenes. , 2019, ACS nano.

[55]  A. Vojvodić,et al.  Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution , 2016 .

[56]  K. Koepernik,et al.  Full-potential band-structure calculation of iron pyrite , 1999 .

[57]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[58]  Shixuan Li,et al.  W‐Based Atomic Laminates and Their 2D Derivative W1.33C MXene with Vacancy Ordering , 2018, Advanced materials.

[59]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[60]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[61]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[62]  Kailun Yao,et al.  Monolayer MXenes: promising half-metals and spin gapless semiconductors. , 2016, Nanoscale.

[63]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[64]  Qiang Gao,et al.  High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds , 2018, Physical Review Materials.