Robust Rendezvous Planning Under Maneuver Execution Errors

The problem of designing rendezvous guidance maneuver plan robust to thrusting errors is addressed in this paper. The aim of this paper is to develop tractable and robust guidance algorithms. Solving the rendezvous guidance problem via a direct approach leads to uncertain optimization problems while accounting for the Guidance, Navigation and Control (GNC) systems uncertainties and errors. A worst-case ap-proach is considered in order to obtain tractable robust counterparts. The robustness certificates derived from these guidance algorithm provide the means to analyze the effects of the considered errors on the rendezvous mission. Several types of missions tested in a linear environment are used to illustrate the methodology.

[1]  Eduardo F. Camacho,et al.  Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation , 2012 .

[2]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[3]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[4]  I. Michael Ross 6 – Space Trajectory Optimization and L1-Optimal Control Problems , 2006 .

[5]  Thomas Carter,et al.  Optimal impulsive space trajectories based on linear equations , 1991 .

[6]  Eduardo F. Camacho,et al.  Trajectory Planning for Spacecraft Rendezvous with On / Off Thrusters , 2011 .

[7]  Denis Arzelier,et al.  Using Polynomial Optimization to Solve the Fuel-Optimal Linear Impulsive Rendezvous Problem , 2011 .

[8]  Jonathan P. How,et al.  Safe Trajectories for Autonomous Rendezvous of Spacecraft , 2006 .

[9]  James M. Longuski,et al.  General Theory of Optimal Rocket Trajectories , 2014 .

[10]  Jonathan P. How Coordination and Control of Multiple Spacecraft using Convex Optimization Techniques , 2002 .

[11]  Jonathan P. How,et al.  Distributed Robust Receding Horizon Control for Multivehicle Guidance , 2007, IEEE Transactions on Control Systems Technology.

[12]  Charles M. Waespy,et al.  Linear-Programming Solutions for Orbital-Transfer Trajectories , 1970, Oper. Res..

[13]  Thomas Carter,et al.  Necessary and Sufficient Conditions for Optimal Impulsive Rendezvous with Linear Equations of Motion , 2000 .

[14]  Georgia Deaconu,et al.  Designing Continuously Constrained Spacecraft Relative Trajectories for Proximity Operations , 2015 .

[15]  Jonathan P. How,et al.  Formation control strategies for a separated spacecraft interferometer , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[16]  Hyochoong Bang,et al.  Adaptive control for satellite formation flying under thrust misalignment , 2009 .

[17]  Ulf T. Jönsson,et al.  Fuel efficient relative orbit control strategies for formation flying and rendezvous within PRISMA , 2006 .

[18]  Edward N. Hartley,et al.  Model predictive control system design and implementation for spacecraft rendezvous , 2012 .

[19]  J. Tschauner The elliptic orbit rendezvous , 1966 .

[20]  A. Ichikawa,et al.  Optimal Pulse Strategies for Relative Orbit Transfer Along a Circular Orbit , 2011 .

[21]  Georgia Deaconu,et al.  Minimizing the Effects of Navigation Uncertainties on the Spacecraft Rendezvous Precision , 2014 .

[22]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[23]  Peter Kall,et al.  Stochastic Programming , 1995 .

[24]  D. Jezewski,et al.  Primer vector theory applied to the linear relative-motion equations. [for N-impulse space trajectory optimization , 1980 .

[25]  Jonathan P. How,et al.  Robust variable horizon model predictive control for vehicle maneuvering , 2006 .

[26]  David C. Redding,et al.  Linear-quadratic stationkeeping for the STS Orbiter , 1989 .

[27]  Per Johan Nicklasson,et al.  Spacecraft formation flying: A review and new results on state feedback control , 2009 .

[28]  Ping Lu,et al.  Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization , 2012 .

[29]  Jonathan P. How,et al.  8 Cooperative Spacecraft Formation Flying: Model Predictive Control with Open-and Closed-Loop Robustness , 2006 .

[30]  Stephen Kemble,et al.  Automated Rendezvous and Docking of Spacecraft , 2007 .

[31]  John E. Prussing,et al.  Optimal multiple-impulse orbital rendezvous , 1967 .

[32]  Mehran Mesbahi,et al.  Multiple-Spacecraft Reconfiguration Through Collision Avoidance, Bouncing, and Stalemate , 2004 .

[33]  Robin Larsson,et al.  Collision avoidance maneuver planning with robust optimization , 2008 .

[34]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[35]  Guo-Jin Tang,et al.  Optimization of multiple-impulse, multiple-revolution, rendezvous-phasing maneuvers , 2007 .

[36]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[37]  Wigbert Fehse Automated Rendezvous and Docking of Spacecraft: Approach safety and collision avoidance , 2003 .

[38]  Pini Gurfil,et al.  Optimal on-off cooperative manoeuvers for long-term satellite cluster flight , 2014 .

[39]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[40]  Jonathan P. How,et al.  Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming , 2002 .

[41]  Jonathan P. How,et al.  Analysis of the impact of sensor noise on formation flying control , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).