A Formalization of CK Design Theory Based on Intuitionist Logic

The paper introduces a formalization of Concept-Knowledge (CK) theory of design reasoning based on Intuitionist Logic and Kripke type semantics. The concept space is de ned as a tree of formulae containing free variables and knowledge space corresponds to an incomplete theory. A set of operations is de ned to model the progressive elaboration of the concept space, the expansion of the knowledge and the interaction of concepts and knowledge

[1]  Armand Hatchuel,et al.  A NEW APPROACH OF INNOVATIVE DESIGN : AN INTRODUCTION TO C-K THEORY. , 2003 .

[2]  Walter P. van Stigt BROUWER'S CAMBRIDGE LECTURES ON INTUITIONISM , 1982 .

[3]  François Jacob The possible and the actual , 1982 .

[4]  L. Brouwer CONSCIOUSNESS, PHILOSOPHY, AND MATHEMATICS , 1975 .

[5]  M. Fitting Intuitionistic logic, model theory and forcing , 1969 .

[6]  Armand Hatchuel,et al.  Towards Design Theory and expandable rationality : The unfinished program of Herbert Simon. 1 , 2003 .

[7]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[8]  Alexis Tsoukiàs,et al.  Extending the C–K design theory: A theoretical background for personal design assistants , 2005 .

[9]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[10]  James E. Tomberlin,et al.  On the Plurality of Worlds. , 1989 .

[11]  B. Weil,et al.  La thorie C-K : Fondements et usages d'une thorie unifie de la conception , 2002 .

[12]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Akin Kazakçi,et al.  A MODEL OF CK DESIGN THEORY BASED ON TERM LOGIC: A FORMAL CK BACKGROUND FOR A CLASS OF DESIGN ASSISTANTS , 2008 .

[14]  Peter Gärdenfors Belief Revision: A Vade-Mecum , 1992, META.

[15]  Armand Hatchuel,et al.  Design as Forcing: Deepening the Foundations of C-K Theory , 2007 .

[16]  F. Landman Structures for semantics , 1991 .