Synthesis and Characterization of Electrospun Nickel Doped Cobalt(II, III) Nanofibers with Application to Maltose Determination

Nickel doped cobalt(II, III) composite nanofibers were prepared by an electrospinning and sequential calcination process, and characterized by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction. An electrospun nickel doped cobalt(II, III) modified carbon paste electrode was used for maltose determination using cyclic voltammetry and amperometry. Under the optimized conditions, a linear response was obtained between 0.2 and 100.0 µM, with a low detection limit of 32.5 nM.

[1]  J. Tu,et al.  Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries , 2013 .

[2]  Fan Yang,et al.  Pd doped Co3O4 nanowire array as the H2O2 electroreduction catalyst , 2013 .

[3]  Wei Zhang,et al.  Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide–Co3O4 nanocomposites , 2013 .

[4]  Haiquan Su,et al.  Influence of pore distribution on catalytic performance over inverse CeO2/Co3O4 catalysts for CH4/CO2 reforming , 2013 .

[5]  Juan Su,et al.  Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. , 2013, Chemical communications.

[6]  Ce Wang,et al.  Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers , 2013 .

[7]  Youfu Wang,et al.  Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials , 2013 .

[8]  Seok Kim,et al.  Effect of carbon blacks filler addition on electrochemical behaviors of Co3O4/graphene nanosheets as a supercapacitor electrodes , 2013 .

[9]  Gengfeng Zheng,et al.  Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes , 2013, Nano Reseach.

[10]  I. Fujita Determination of Maltose in Honey , 2012 .

[11]  Qin Xu,et al.  Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. , 2012, The Analyst.

[12]  Bin Ding,et al.  Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas. , 2012, Nanoscale.

[13]  H. Pang,et al.  Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. , 2012, Dalton transactions.

[14]  W. Wang,et al.  Binary CuO/Co3O4 nanofibers for ultrafast and amplified electrochemical sensing of fructose , 2011 .

[15]  Yu Lei,et al.  Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. , 2010, Biosensors & bioelectronics.

[16]  Xi Zhang,et al.  Unconventional layer-by-layer assembly of graphene multilayer films for enzyme-based glucose and maltose biosensing. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  A. Telefoncu,et al.  Maltose biosensing based on co-immobilization of alpha-glucosidase and pyranose oxidase. , 2010, Bioelectrochemistry.

[18]  Yiying Wu,et al.  NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution , 2010, Advanced materials.

[19]  R. Derman,et al.  Ferric carboxymaltose injection in the treatment of postpartum iron deficiency anemia: a randomized controlled clinical trial. , 2008, American journal of obstetrics and gynecology.

[20]  Suna Timur,et al.  Pyranose oxidase biosensor based on carbon nanotube (CNT)-modified carbon paste electrodes , 2008 .

[21]  L. Sidossis,et al.  Effect of maltose-containing sports drinks on exercise performance. , 2004, International journal of sport nutrition and exercise metabolism.

[22]  J. Raoof,et al.  Electrocatalytic oxidation of some carbohydrates by poly(1-naphthylamine)/nickel modified carbon paste electrode , 2004 .

[23]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[24]  J. Zaia Mass spectrometry of oligosaccharides. , 2004, Mass spectrometry reviews.

[25]  Joseph Wang,et al.  Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes , 2004 .

[26]  C. Henry,et al.  Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. , 2002, The Analyst.

[27]  M. Suzuki,et al.  A novel enzymic determination of maltose. , 2000, Carbohydrate research.

[28]  A. Olano,et al.  Determination of mono and disaccharide content of enteral formulations by gas chromatography , 2000 .

[29]  K. T. Kawagoe,et al.  Sinusoidal Voltammetry for the Analysis of Carbohydrates at Copper Electrodes , 1997 .

[30]  Javier Muñoz,et al.  Chemical sensors, biosensors and thick-film technology , 1995 .

[31]  S. Bachrach Chemistry on the Internet: The Northern Illinois University Chemistry WWW/Gopher Site , 1995 .

[32]  A. Mason,et al.  Replacement therapy with modified immunoglobulin G in burn patients: preliminary kinetic studies. , 1984, The American journal of medicine.

[33]  K. Yoshikawa,et al.  Metabolism of maltose during surgery in patients with diabetes mellitus under general anesthesia , 1976, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie.

[34]  K. Takahashi,et al.  Maltose metabolism in diabetic state. , 1974, The Tohoku journal of experimental medicine.

[35]  N. Ming,et al.  Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts , 2006 .

[36]  G. Sesta Determination of sugars in royal jelly by HPLC , 2006 .

[37]  T. Kuwana,et al.  Electrochemical detection of carbohydrates at nickel‐copper and nickel‐chromium‐iron alloy electrodes , 1993 .