QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input

QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal‐organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three‐step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal‐organic frameworks (MOFs), QuickFF is used to determine force fields for MIL‐53(Al) and MOF‐5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc.

[1]  F. Kapteijn,et al.  Self-diffusion studies in CuBTC by PFG NMR and MD simulations , 2010 .

[2]  Saeed Amirjalayer,et al.  First-Principles-Derived Force Field for Copper Paddle-Wheel-Based Metal−Organic Frameworks , 2010 .

[3]  S. Grimme A General Quantum Mechanically Derived Force Field (QMDFF) for Molecules and Condensed Phase Simulations. , 2014, Journal of chemical theory and computation.

[4]  Ivo Cacelli,et al.  Parametrization and Validation of Intramolecular Force Fields Derived from DFT Calculations. , 2007, Journal of chemical theory and computation.

[5]  Patric Schyman,et al.  Exploring Adsorption of Water and Ions on Carbon Surfaces using a Polarizable Force Field. , 2013, The journal of physical chemistry letters.

[6]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[7]  C. Serre,et al.  Probing the Adsorption Sites for CO2 in Metal Organic Frameworks Materials MIL-53 (Al, Cr) and MIL-47 (V) by Density Functional Theory , 2008 .

[8]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[9]  J. Sauer,et al.  Quantum Chemical Free Energies: Structure Optimization and Vibrational Frequencies in Normal Modes. , 2013, Journal of chemical theory and computation.

[10]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[11]  A. Ghoufi,et al.  Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr). , 2009, Angewandte Chemie.

[12]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[13]  Berend Smit,et al.  Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  G. Sastre,et al.  Atomistic Simulation of Water Intrusion–Extrusion in ITQ-4 (IFR) and ZSM-22 (TON): The Role of Silanol Defects , 2011 .

[15]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[16]  T. K. Roy,et al.  MOF‐FF – A flexible first‐principles derived force field for metal‐organic frameworks , 2013 .

[17]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[18]  B. Smit,et al.  On the Thermodynamics of Framework Breathing: A Free Energy Model for Gas Adsorption in MIL-53 , 2013 .

[19]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[20]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[21]  F. Escudero,et al.  Atoms in molecules , 1982 .

[22]  Paul S. Charifson,et al.  Practical Application of Computer-Aided Drug Design , 1997 .

[23]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[24]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[25]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[26]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[27]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[28]  T Verstraelen,et al.  Hirshfeld-E Partitioning: AIM Charges with an Improved Trade-off between Robustness and Accurate Electrostatics. , 2013, Journal of chemical theory and computation.

[29]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[30]  Lennox E. Iton,et al.  An assessment of density functional methods for studying molecular adsorption in cluster models of zeolites , 1998 .

[31]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[32]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[33]  Rochus Schmid,et al.  Systematic first principles parameterization of force fields for metal-organic frameworks using a genetic algorithm approach. , 2009, The journal of physical chemistry. B.

[34]  Rochus Schmid,et al.  Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5 , 2007, J. Comput. Chem..

[35]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[36]  T. Heine,et al.  Extension of the Universal Force Field for Metal-Organic Frameworks. , 2016, Journal of chemical theory and computation.

[37]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[38]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[39]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[40]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[41]  M. Pera‐Titus,et al.  Quantitative Characterization of Breathing upon Adsorption for a Series of Amino-Functionalized MIL-53 , 2012 .

[42]  A. Walsh,et al.  Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF , 2014, Journal of chemical theory and computation.

[43]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[44]  D. Neumann,et al.  Reversible structural transition in MIL-53 with large temperature hysteresis. , 2008, Journal of the American Chemical Society.

[45]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[46]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[47]  Yanli Wang,et al.  PubChem: Integrated Platform of Small Molecules and Biological Activities , 2008 .

[48]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[49]  T. Heine,et al.  Extension of the Universal Force Field to Metal-Organic Frameworks. , 2014, Journal of chemical theory and computation.

[50]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[51]  C. Serre,et al.  Diffusion of Binary CO2/CH4 Mixtures in the MIL-47(V) and MIL-53(Cr) Metal–Organic Framework Type Solids: A Combination of Neutron Scattering Measurements and Molecular Dynamics Simulations , 2013 .

[52]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[53]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[54]  S. Shi,et al.  A Continuum Model of the Van der Waals Interface for Determining the Critical Diameter of Nanopumps and its Application to Analysis of the Vibration and Stability of Nanopump Systems , 2010 .

[55]  Pedro Alexandrino Fernandes,et al.  General performance of density functionals. , 2007, The journal of physical chemistry. A.

[56]  C. Serre,et al.  Complex adsorption of short linear alkanes in the flexible metal-organic-framework MIL-53(Fe). , 2009, Journal of the American Chemical Society.

[57]  Toon Verstraelen,et al.  Automated Parametrization of AMBER Force Field Terms from Vibrational Analysis with a Focus on Functionalizing Dinuclear Zinc(II) Scaffolds. , 2012, Journal of chemical theory and computation.

[58]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[59]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[60]  Kristof M. Bal,et al.  Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study , 2013 .

[61]  Krista S. Walton,et al.  Molecular Simulations and Experimental Studies of CO2, CO, and N2 Adsorption in Metal−Organic Frameworks , 2010 .

[62]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[63]  Vincenzo Barone,et al.  Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data. , 2013, Physical chemistry chemical physics : PCCP.

[64]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[65]  Saeed Amirjalayer,et al.  Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. , 2007, Angewandte Chemie.

[66]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[67]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[68]  Toon Verstraelen,et al.  TAMkin: A Versatile Package for Vibrational Analysis and Chemical Kinetics , 2010, J. Chem. Inf. Model..

[69]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[70]  Paul W. Ayers,et al.  Efficient parameterization of torsional terms for force fields , 2014, J. Comput. Chem..

[71]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[72]  J. Soler,et al.  Flexibility in a metal-organic framework material controlled by weak dispersion forces: the bistability of MIL-53(Al). , 2010, Angewandte Chemie.

[73]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[74]  C. Serre,et al.  Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation. , 2008, Journal of the American Chemical Society.

[75]  A. Hagler,et al.  Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, Journal of Computational Chemistry.

[77]  François-Xavier Coudert,et al.  Double structural transition in hybrid material MIL-53 upon hydrocarbon adsorption: the thermodynamics behind the scenes. , 2009, Journal of the American Chemical Society.

[78]  T. Verstraelen,et al.  Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al). , 2012, Journal of chemical theory and computation.

[79]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[80]  L. E. Cordova,et al.  A molecular device operating at terahertz frequencies: theoretical simulations , 2004, IEEE Transactions on Nanotechnology.

[81]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[82]  C. Serre,et al.  Metal-organic frameworks as potential shock absorbers: the case of the highly flexible MIL-53(Al). , 2014, Chemical communications.

[83]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[84]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.