Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits

VOPc maintains an “oxygen-up” orientation and its spin on graphene is S = 1/2: this is an interesting system for qubit applications.

[1]  S. Loth,et al.  Tunable Spin-Superconductor Coupling of Spin 1/2 Vanadyl Phthalocyanine Molecules. , 2018, Nano letters.

[2]  C. Lutz,et al.  Hyperfine interaction of individual atoms on a surface , 2018, Science.

[3]  D. P. Woodruff,et al.  The Structure of VOPc on Cu(111): Does V=O Point Up, or Down, or Both? , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[5]  A. Ouerghi,et al.  Magnetic bistability of a TbPc2 submonolayer on a graphene/SiC(0001) conductive electrode. , 2018, Nanoscale.

[6]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[7]  C. Lutz,et al.  Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface. , 2017, Physical review letters.

[8]  M. Affronte,et al.  Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits , 2017, Scientific Reports.

[9]  Stefan Grimme,et al.  Extension of the D3 dispersion coefficient model. , 2017, The Journal of chemical physics.

[10]  M. Mannini,et al.  Molecular Order in Buried Layers of TbPc2 Single‐Molecule Magnets Detected by Torque Magnetometry , 2016, Advanced materials.

[11]  M. Chiesa,et al.  Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. , 2016, Journal of the American Chemical Society.

[12]  T. Basova,et al.  Interface Properties of VOPc on Ni(111) and Graphene/Ni(111): Orientation-Dependent Charge Transfer , 2015 .

[13]  A. Ouerghi,et al.  Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001) , 2015, Nano Research.

[14]  B. Cortigiani,et al.  Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. , 2015, Nano letters.

[15]  T. Yokoyama,et al.  Magnetic interactions of vanadyl phthalocyanine with ferromagnetic iron, cobalt, and nickel surfaces , 2014 .

[16]  A. Magnani,et al.  Tetrairon(III) single-molecule magnet monolayers on gold: insights from ToF-SIMS and isotopic labeling. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[17]  A. Ouerghi,et al.  High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen , 2014, Scientific Reports.

[18]  Zhenyu Li,et al.  Single molecule tunneling spectroscopy investigation of reversibly switched dipolar vanadyl phthalocyanine on graphite , 2014 .

[19]  Wei Chen,et al.  Molecular Ordering and Dipole Alignment of Vanadyl Phthalocyanine Monolayer on Metals: The Effects of Interfacial Interactions , 2014 .

[20]  A. Ouerghi,et al.  Flower-Shaped Domains and Wrinkles in Trilayer Epitaxial Graphene on Silicon Carbide , 2014, Scientific Reports.

[21]  Gabriel Aeppli,et al.  Potential for spin-based information processing in a thin-film molecular semiconductor , 2013, Nature.

[22]  T. Yokoyama,et al.  Molecular Orientation and Electronic States of Vanadyl Phthalocyanine on Si(111) and Ag(111) Surfaces , 2013 .

[23]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[24]  Rachid Belkhou,et al.  Large-area and high-quality epitaxial graphene on off-axis SiC wafers. , 2012, ACS nano.

[25]  Chenggang Zhou,et al.  Substrate Reconstruction Mediated Unidirectionally Aligned Molecular Dipole Dot Arrays , 2012 .

[26]  W. Wernsdorfer,et al.  Graphene spintronic devices with molecular nanomagnets. , 2011, Nano letters.

[27]  A. Caneschi,et al.  A DFT exploration of the organization of thiols on Au(111): a route to self-assembled monolayer of magnetic molecules , 2010 .

[28]  Jianbin Xu,et al.  Correlation between Molecular Packing and Surface Potential at Vanadyl Phthalocyanine/HOPG Interface , 2010 .

[29]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[30]  Joost VandeVondele,et al.  Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations. , 2010, Journal of chemical theory and computation.

[31]  H. B. Weber,et al.  Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy , 2008 .

[32]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[33]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[34]  S. Bernardis,et al.  Electronic structure of the organic semiconductor vanadyl phthalocyanine (VO-Pc) , 2007 .

[35]  C. Berger,et al.  Electron states of mono and bilayer graphene on SiC probed by scanning-tunneling microscopy , 2007, cond-mat/0702406.

[36]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[37]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[38]  Hirohiko Fukagawa,et al.  Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy , 2006 .

[39]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[40]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[41]  Hirohiko Fukagawa,et al.  UPS fine structures of highest occupied band in vanadyl-phthalocyanine ultrathin film , 2005 .

[42]  Matthias Krack,et al.  Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals , 2005 .

[43]  N. Papageorgiou,et al.  Geometry and electronic structure of lead phthalocyanine: Quantum calculations via density-functional theory and photoemission measurements , 2003 .

[44]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[45]  Smith,et al.  Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. , 1996, Physical review. B, Condensed matter.

[46]  M. Hochella,et al.  The calculation of STM images, STS spectra, and XPS peak shifts for galena: New tools for understanding mineral surface chemistry , 1996 .

[47]  C. Brouder Angular dependence of X-ray absorption spectra , 1990 .

[48]  Hamann,et al.  Theory of the scanning tunneling microscope. , 1985, Physical review. B, Condensed matter.

[49]  R. Ziolo,et al.  Crystal structure of vanadyl phthalocyanine, phase II , 1981 .

[50]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[51]  Frank Neese,et al.  The ORCA program system , 2012 .

[52]  D. P. Woodruff,et al.  A photoelectron diffraction investigation of vanadyl phthalocyanine on Au(111) , 2010 .

[53]  O. Monti,et al.  Near- and far-field effects on molecular energy level alignment at an organic/electrode interface , 2010 .