Testing PID and MPC Performance for Mobile Robot Local Path-Following

This paper outlines the online performance of a control law based on PID (proportional-integral-derivative) controllers and MPC (model predictive control) for mobile robot local path-following. Both techniques share the use of a set of different dynamic models. PID controllers are used for controlling the speed of the robot's wheels, while high level algorithms compute the necessary wheel speeds in order to generate a motion that approaches the vehicle towards the desired path. Meanwhile, local MPC is implemented by computing the horizon of suitable coordinates that arise from the set of command input combinations. Therefore, command speeds that correspond to the desired point are obtained by minimizing a cost function in which the population of the available coordinates is taken into account.

[1]  J. M. D. Silva,et al.  Model Predictive Control of a Mobile Robot Using Linearization , 2022 .

[2]  J. Doyle,et al.  NONLINEAR OPTIMAL CONTROL: A CONTROL LYAPUNOV FUNCTION AND RECEDING HORIZON PERSPECTIVE , 1999 .

[3]  Ningsu Luo,et al.  Mobile robot experimental modeling and control strategies using sensor fusion , 2006 .

[4]  Nadine Gottschalk,et al.  Computer Controlled Systems Theory And Design , 2016 .

[5]  Michael Nikolaou,et al.  MPC: Current practice and challenges , 2012 .

[6]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[7]  Igor Skrjanc,et al.  Tracking-error model-based predictive control for mobile robots in real time , 2007, Robotics Auton. Syst..

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  Petter Ögren,et al.  A convergent dynamic window approach to obstacle avoidance , 2005, IEEE Transactions on Robotics.

[10]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[11]  Genci Capi,et al.  Evolution of neural controllers in real mobile robots for task switching behaviors , 2009 .

[12]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[13]  Andrey V. Savkin,et al.  Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation , 2013, Robotics Auton. Syst..

[14]  A. Ollero,et al.  Predictive path tracking of mobile robots. Application to the CMU NavLab , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[15]  Carlos Canudas de Wit,et al.  Exponential control law for a mobile robot: extension to path following , 1993, IEEE Trans. Robotics Autom..

[16]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[17]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[18]  Gregor Klan Tracking-error model-based predictive control for mobile robots in real time , 2007 .

[19]  O. J. Sørdalen,et al.  Exponential control law for a mobile robot: extension to path following , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[20]  Hiroshi Noborio,et al.  Mobile Robot Navigation under Sensor and Localization Uncertainties , 1996, AMS.

[21]  Farzad Pourboghrat,et al.  Adaptive control of dynamic mobile robots with nonholonomic constraints , 2002, Comput. Electr. Eng..

[22]  Tore Hägglund,et al.  The future of PID control , 2000 .

[23]  A. Astolfi Discontinuous control of nonholonomic systems , 1996 .