Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

[1]  W. Chiu,et al.  Geometric sensitivity of electrochemical fin shape on three dimensional microstructure network conductivity analysis , 2015 .

[2]  William M. Harris,et al.  Characterization of Cracks and their Effects on the Effective Transport Pathways in Ni-YSZ Anodes after Reoxidation Using X-Ray Nanotomography , 2015 .

[3]  P. S. Jørgensen,et al.  Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure , 2015 .

[4]  William M. Harris,et al.  In Situ Heater Design for Nanoscale Synchrotron-Based Full-Field Transmission X-Ray Microscopy , 2015, Microscopy and Microanalysis.

[5]  Naoki Shikazono,et al.  Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles , 2014 .

[6]  W. Chiu,et al.  Analytical solutions for extended surface electrochemical fin models , 2014 .

[7]  P. S. Jørgensen,et al.  On the accuracy of triple phase boundary lengths calculated from tomographic image data , 2014 .

[8]  Francois L. E. Usseglio-Viretta,et al.  Quantitative microstructure characterization of a Ni–YSZ bi-layer coupled with simulated electrode polarisation , 2014 .

[9]  William M. Harris,et al.  Three-Dimensional Microstructural Imaging of Sulfur Poisoning-Induced Degradation in a Ni-YSZ Anode of Solid Oxide Fuel Cells , 2014, Scientific Reports.

[10]  W. Chiu,et al.  A Rapid Analytical Assessment Tool for Three Dimensional Electrode Microstructural Networks with Geometric Sensitivity , 2014 .

[11]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[12]  A. Bertei,et al.  Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes , 2013 .

[13]  William M. Harris,et al.  Three-dimensional microstructural imaging methods for energy materials. , 2013, Physical chemistry chemical physics : PCCP.

[14]  William M. Harris,et al.  Three-dimensional microstructural mapping of poisoning phases in the Neodymium Nickelate solid oxide fuel cell cathode , 2013 .

[15]  William M. Harris,et al.  Focused ion beam preparation of samples for X-ray nanotomography. , 2012, Journal of synchrotron radiation.

[16]  W. Chiu,et al.  Redox instability, mechanical deformation, and heterogeneous damage accumulation in solid oxide fuel cell anodes , 2012 .

[17]  Wilson K. S. Chiu,et al.  Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy , 2012, Journal of synchrotron radiation.

[18]  Nigel P. Brandon,et al.  Exploring microstructural changes associated with oxidation in Ni-YSZ SOFC electrodes using high resolution X-ray computed tomography , 2012 .

[19]  Jan Van herle,et al.  Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation , 2012 .

[20]  P. Bleuet,et al.  Characterisation of Solid Oxide Fuel Cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification , 2012 .

[21]  Phillip A. Williams,et al.  TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy , 2012, Journal of synchrotron radiation.

[22]  J. Herle,et al.  Air side contamination in Solid Oxide Fuel Cell stack testing , 2011 .

[23]  Piero Pianetta,et al.  Comparison of SOFC cathode microstructure quantified using X-ray nanotomography and focused ion beam scanning electron microscopy , 2011 .

[24]  Wilson K. S. Chiu,et al.  Analytical investigations of varying cross section microstructures on charge transfer in solid oxide , 2011 .

[25]  Boris Iwanschitz,et al.  Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres , 2011 .

[26]  Wilson K. S. Chiu,et al.  Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure. Part 1: Volumetric measurements of the heterogeneous structure , 2010 .

[27]  Wilson K. S. Chiu,et al.  Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure: Part 2. Quantitative measurement of the microstructure and contributions to transport losses , 2010 .

[28]  N. Abatzoglou,et al.  Connected Three-Phase Boundary Length Evaluation in Modeled Sintered Composite Solid Oxide Fuel Cell Electrodes , 2010 .

[29]  Francesco De Carlo,et al.  Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode , 2010 .

[30]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[31]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[32]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[33]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[34]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[35]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[36]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[37]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[38]  Yanhai Du,et al.  Multiphysics Design and Development of Heterogeneous Functional Materials for Renewable Energy Devices: The HeteroFoaM Story , 2013 .