Click chemistry produces hyper-cross-linked polymers with tetrahedral cores

Methane and adamantane based hyper-cross-linked polymers have been prepared by click chemistry reacting the corresponding tetraalkynes with 1,4-diazidobenzene. The adamantane based HCP proved to be very efficient for CO2 capture at low pressures.

[1]  K. Klenin,et al.  Branched DNA that forms a solid at 95 °C. , 2011, Angewandte Chemie.

[2]  Wolfgang H. Binder,et al.  Azide/alkyne-"click"-reactions of encapsulated reagents: toward self-healing materials. , 2011, Macromolecular rapid communications.

[3]  S. Bräse,et al.  Fourfold Suzuki–Miyaura and Sonogashira Cross‐Coupling Reactions on Tetrahedral Methane and Adamantane Derivatives , 2011 .

[4]  Alexander M. Spokoyny,et al.  A “click-based” porous organic polymer from tetrahedral building blocks , 2011 .

[5]  Lixian Sun,et al.  Microporous polyimide networks with large surface areas and their hydrogen storage properties. , 2010, Chemical communications.

[6]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[7]  Arne Thomas,et al.  Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[8]  A. Cooper,et al.  High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry , 2010 .

[9]  Martin Nieger,et al.  Asymmetric synthesis of chiral tectons with tetrapodal symmetry: fourfold asymmetric reactions , 2010 .

[10]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[11]  R. Hoogenboom Thiol-yne chemistry: a powerful tool for creating highly functional materials. , 2010, Angewandte Chemie.

[12]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[13]  S. Perrier,et al.  Hyperbranched polymers by thiol-yne chemistry: from small molecules to functional polymers. , 2009, Journal of the American Chemical Society.

[14]  Stefan Bräse,et al.  Di- and dodeca-Mitsunobu reactions on C60 derivatives: post-functionalization of fullerene mono- and hexakis-adducts. , 2009, Chemistry.

[15]  Martin Nieger,et al.  Four-fold click reactions: Generation of tetrahedral methane- and adamantane-based building blocks for higher-order molecular assemblies. , 2009, Organic & biomolecular chemistry.

[16]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[17]  Zhonggang Wang,et al.  Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin. , 2009, Chemical communications.

[18]  W. Wenzel,et al.  Two Base Pair Duplexes Suffice to Build a Novel Material , 2009, Chembiochem : a European journal of chemical biology.

[19]  Stefan Bräse,et al.  Functionalization of hexakis methanofullerene malonate crown-ethers: promising octahedral building blocks for molecular networks. , 2009, Chemical communications.

[20]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[21]  Jae Wook Lee,et al.  Comparison of Three Different Click Reaction Methods for the Synthesis of Fluorene-Based Polymers and Performance in Quasi-Solid-State DSSCs , 2008 .

[22]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[23]  B. Tang Construction of Functional Polymers from Acetylenic Triple‐Bond Building Blocks , 2008 .

[24]  Yongqiang Dong,et al.  Hyperbranched Polytriazoles: Click Polymerization, Regioisomeric Structure, Light Emission, and Fluorescent Patterning , 2008 .

[25]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[26]  D. Díaz,et al.  Click chemistry in materials synthesis. III. Metal‐adhesive polymers from Cu(I)‐catalyzed azide–alkyne cycloaddition , 2007 .

[27]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[28]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[29]  Ben Zhong Tang,et al.  Click polymerization : facile synthesis of functional poly(aroyltriazole)s by metal-free, regioselective 1,3-dipolar polycycloaddition , 2007 .

[30]  W. King,et al.  1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips , 2006 .

[31]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[32]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[33]  J. Reek,et al.  Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. , 2005, Chemical communications.

[34]  Stefan Bräse,et al.  Organic azides: an exploding diversity of a unique class of compounds. , 2005, Angewandte Chemie.

[35]  U. Bunz,et al.  Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes , 2005 .

[36]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[37]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials. , 2005, Chemistry.

[38]  Philipp Holzer,et al.  Click chemistry in materials synthesis. 1. Adhesive polymers from copper‐catalyzed azide‐alkyne cycloaddition , 2004 .

[39]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[40]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[41]  C. Barner‐Kowollik,et al.  Well-defined star shaped polymer-fullerene hybrids via click chemistry† , 2009 .