Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision

Interface contributions as well as size confinement effects need to be taken into account into the description of phase equilibria and phase transformations in nanoscale systems. Here, a modified Gibbsian thermodynamic approach has been suggested to describe the solidification of a nano-sized liquid alloy droplet and the equilibrium states in the two-phase region of the phase diagram. Cu–Ni has been chosen as a model system due to the availability of thermodynamic data. This description shows for the first time the occurrence of solidification loops at the size-dependent temperature–composition phase diagram for the isolated Cu–Ni nano-droplet, showing two-phase equilibrium states for droplet radii of 25 and 40 nm, i.e. well within the size domain of nanoparticles that are, for example, used for applications in additive manufacturing. Furthermore, the current results show quantitatively that these equilibrium loops that are specific for the nano-sized systems do not coincide with the solubility curve. It leads to the new “solidification loop” concept concerning the phase diagram introduced in the paper. The isolated liquid Cu–Ni nanoscale droplet can actually crystallize along different trajectories, whereas the dominant transition type is comparable to homogeneous nucleation that proceeds from the inner part of the droplet towards the surface: the newly formed phase after initial nucleation is a Ni-rich crystal with a Cu-rich liquid shell. The decrease in the nanoparticle size causes the decrease in the solidification temperature and the temperature width of the phase transition, the increase in the solubility limit and the concentration width of the solidification loop as well as a change in the shape and slope of the equilibrium curves of the two-phase region of the phase diagram. For larger droplets, the size-dependent phase diagram approaches the well-known bulk phase diagram.

[1]  D. Turnbull Formation of Crystal Nuclei in Liquid Metals , 1950 .

[2]  J. Steininger Thermodynamics and Calculation of the Liquidus‐Solidus Gap in Homogeneous, Monotonic Alloy Systems , 1970 .

[3]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[4]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[5]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[6]  Lawrence H. Bennett,et al.  Binary alloy phase diagrams , 1986 .

[7]  Thermodynamics of finite systems and the kinetics of first-order phase transitions , 1987 .

[8]  F. Schweitzer,et al.  Kinetics of Phase Transitions in Finite Systems — A Stochastic Approach , 1988 .

[9]  S. A. Mey Thermodynamic re-evaluation of the CuNi system , 1992 .

[10]  Melting a copper cluster: Critical droplet theory , 1992, cond-mat/9207023.

[11]  M. Wautelet Effects of size, shape and environment on the phase diagrams of small structures , 1992 .

[12]  Pierre Villars,et al.  Handbook of Ternary Alloy Phase Diagrams , 1995 .

[13]  N. Saunders,et al.  CALPHAD : calculation of phase diagrams : a comprehensive guide , 1998 .

[14]  B. Johansson,et al.  Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu , 1999 .

[15]  U. Landman,et al.  Melting of gold clusters , 1999 .

[16]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[17]  G. Vojta,et al.  Phase Equilibria, Phase Diagrams and Phase Transformations. Their Thermodynamic Basis , 1999 .

[18]  D. Oleszak,et al.  Magnetic properties and structure of nanocrystalline Fe-Al and Fe-Ni alloys , 1999 .

[19]  B. Tøtdal,et al.  Analysis of Alloy Nanoparticles , 2000, Microchimica Acta.

[20]  T. L. Hill A Different Approach to Nanothermodynamics , 2001 .

[21]  Mingda Wu,et al.  Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles , 2001 .

[22]  Toshihiro Tanaka,et al.  Thermodynamic Evaluation of Nano-Particle Binary Alloy Phase Diagrams , 2001 .

[23]  K. Mills Recommended Values of Thermophysical Properties for Selected Commercial Alloys , 2001 .

[24]  R. Richards,et al.  Nanoscopic Metal Particles — Synthetic Methods and Potential Applications , 2001 .

[25]  Alan Dinsdale,et al.  MTDATA - thermodynamic and phase equilibrium software from the National Physical Laboratory , 2002 .

[26]  A. Neimark,et al.  Inside the hysteresis loop: multiplicity of internal states in confined fluids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Shiping Huang,et al.  Melting of Bimetallic Cu−Ni Nanoclusters , 2002 .

[28]  Fan Zhang,et al.  The PANDAT software package and its applications , 2002 .

[29]  N. Hwang,et al.  Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. , 2002, Physical Review Letters.

[30]  H. Yasuda,et al.  Phase diagrams in nanometer-sized alloy systems , 2002 .

[31]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[32]  Z. Jian,et al.  Solid-liquid Interface Energy of Metals at Melting Point and Undercooled State , 2002 .

[33]  H. Yasuda,et al.  Alloy phase formation in nanometer-sized particles in the In-Sn system , 2002 .

[34]  W. L. Worrell,et al.  Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells , 2002 .

[35]  Q. Jiang,et al.  Size-dependent continuous binary solution phase diagram , 2003 .

[36]  Y. Chushak,et al.  Freezing of Ni-Al bimetallic nanoclusters in computer simulations , 2003 .

[37]  V. A. Ushakov,et al.  Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition , 2003 .

[38]  Qing-Ai Liu,et al.  Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction , 2003 .

[39]  R. Shneck,et al.  Solid-liquid equilibria in nanoparticles of Pb-Bi alloys , 2004 .

[40]  A. Shirinyan,et al.  Phase separation in nanoparticles , 2004 .

[41]  J. Brillo,et al.  Density and Thermal Expansion of Liquid Au-Cu Alloys , 2004 .

[42]  M. N. Magomedov Dependence of the surface energy on the size and shape of a nanocrystal , 2004 .

[43]  J. Brillo,et al.  Thermophysical Properties of Undercooled Liquid Cu–Ni Alloys , 2004 .

[44]  A. Shirinyan,et al.  Phase diagrams of decomposing nanoalloys , 2004 .

[45]  Qianwang Chen,et al.  Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures , 2004 .

[46]  Q. Jiang,et al.  Modelling of surface energies of elemental crystals , 2004 .

[47]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[48]  G. Wilde,et al.  Two-phase equilibrium in small alloy particles , 2004, cond-mat/0406477.

[49]  L. Schultz,et al.  Cu–Nb alloys prepared by mechanical alloying and subsequent heat treatment , 2004 .

[50]  M. Zahn,et al.  Monodispersed Fe-Pt nanoparticles for biomedical applications , 2005 .

[51]  A. Shirinyan,et al.  Phase diagram versus diagram of solubility: What is the difference for nanosystems? , 2005 .

[52]  J. I. Lee,et al.  Electronic and Magnetic Properties of Ultrathin Fe−Co Alloy Nanowires , 2005 .

[53]  W. Martienssen,et al.  Springer handbook of condensed matter and materials data , 2005 .

[54]  F. Baletto,et al.  Single impurity effect on the melting of nanoclusters. , 2005, Physical review letters.

[55]  Jianzhong Jiang,et al.  Thermodynamic Calculation of Phase Diagram and Phase Stability with Nano-Size Particles , 2005 .

[56]  V. Rotello,et al.  Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications , 2005 .

[57]  D. Weller,et al.  Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide , 2005 .

[58]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[59]  M. Hove,et al.  Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo) , 2005 .

[60]  M. Zhou,et al.  Modeling cohesive energy and melting temperature of nanocrystals , 2006 .

[61]  W. Jesser,et al.  Two-phase equilibrium in individual nanoparticles of Bi-Sn , 2006 .

[62]  A. Shirinyan,et al.  Solubility diagram of the Cu–Ni nanosystem , 2006 .

[63]  U. Pal,et al.  Structural transformation of Au-Pd bimetallic nanoclusters on thermal heating and cooling: a dynamic analysis. , 2006, The journal of physical chemistry. B.

[64]  Mingjun Li,et al.  Free Solidification of Undercooled Eutectics , 2006 .

[65]  G. U. Kulkarni,et al.  Nanocrystalline films of Au-Ag, Au-Cu, and Au-Ag-Cu alloys formed at the organic-aqueous interface. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[66]  Mats Hillert,et al.  Phase equilibria, phase diagrams and phase transformations : Their thermodynamic basis, second edition , 2007 .

[67]  Q. Mei,et al.  Melting and superheating of crystalline solids: From bulk to nanocrystals , 2007 .

[68]  G. Wilde,et al.  Phase equilibria and phase diagrams of nanoscaled systems , 2007 .

[69]  Q. Chang SIZE DEPENDENCE OF NANOSTRUCTURES: IMPACT OF BOND ORDER DEFICIENCY , 2007 .

[70]  A. Lasia,et al.  Hydrogen adsorption/absorption on Pd/Pt(111) multilayers , 2008 .

[71]  Joongchul Park,et al.  Phase diagram reassessment of Ag–Au system including size effect , 2008 .

[72]  G. Rossi,et al.  Global optimisation and growth simulation of AuCu clusters. , 2008, Faraday discussions.

[73]  Q. Jiang,et al.  Size Effect on the Phase Stability of Nanostructures , 2008 .

[74]  D. Raabe,et al.  Thermodynamic Re-Assessment of the Co–Nb System , 2008 .

[75]  R. Johnston,et al.  Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles , 2008 .

[76]  方亮,et al.  Densities of molten Ni-(Cr, Co, W) superalloys , 2008 .

[77]  Kuan-Wen Wang,et al.  Surface Segregation of PdxNi100-x Alloy Nanoparticles , 2008 .

[78]  L. Fang,et al.  Surface Tension of Molten Ni and Ni-Co Alloys , 2009 .

[79]  J. Tersoff,et al.  Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. , 2009, Physical review letters.

[80]  Qiang Wang,et al.  Molecular Dynamics Simulation of the Melting and Coalescence in the Mixed Cu–Ni Nanoclusters , 2010 .

[81]  Fiseha Tesfaye,et al.  Densities of Molten and Solid Alloys of (Fe, Cu, Ni, Co)-S at Elevated Temperatures - Literature Review and Analysis , 2010 .

[82]  G. Kaptay The extension of the phase rule to nano-systems and on the quaternary point in one-component nano phase diagrams. , 2010, Journal of nanoscience and nanotechnology.

[83]  Bai-yun Huang,et al.  Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. , 2011, Physical chemistry chemical physics : PCCP.

[84]  U. Pal,et al.  Au@Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators. , 2011, Nanoscale.

[85]  Bai-yun Huang,et al.  Universal relation for size dependent thermodynamic properties of metallic nanoparticles. , 2011, Physical chemistry chemical physics : PCCP.

[86]  A. Safaei Cohesive energy and physical properties of nanocrystals , 2011 .

[87]  Y. Shibuta,et al.  Estimation of Solid-liquid Interfacial Energy from Gibbs-Thomson Effect: A Molecular Dynamics Study , 2011 .

[88]  H. Zeng,et al.  Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[89]  S. Ghosh,et al.  Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. , 2011, Nanoscale.

[90]  B. Hallstedt,et al.  Density and thermal expansion of liquid Al–Si alloys , 2004, Journal of Materials Science.

[91]  A. I. Rusanov The development of the fundamental concepts of surface thermodynamics , 2012, Colloid Journal.

[92]  Shigang Sun,et al.  Two-stage melting in core-shell nanoparticles: An atomic-scale perspective , 2012 .

[93]  G. Kaptay Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions , 2012, Journal of Materials Science.

[94]  N. Zheng,et al.  Small Adsorbate‐Assisted Shape Control of Pd and Pt Nanocrystals , 2012, Advanced materials.

[95]  A. Shirinyan,et al.  Atom-atom interactions in continuous metallic nanofilms , 2012, The Physics of Metals and Metallography.

[96]  Bai-yun Huang,et al.  Size- and Composition-Dependent Structural Stability of Core−Shell and Alloy Pd−Pt and Au−Ag Nanoparticles , 2013 .

[97]  P. Strasser,et al.  Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. , 2013, ACS nano.

[98]  A. O. Kovalchuk,et al.  Interrelation of depletion and segregation in decomposition of nanoparticles , 2013 .

[99]  Jaeyoung Jang,et al.  Bi(1)-(x)Sb(x) alloy nanocrystals: colloidal synthesis, charge transport, and thermoelectric properties. , 2013, ACS nano.

[100]  R. Johnston,et al.  Structure and solid solution properties of Cu–Ag nanoalloys , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[101]  J. Buršík,et al.  Cu–Ni nanoalloy phase diagram – Prediction and experiment , 2014 .

[102]  T. Mandal,et al.  Polymer-Assisted Chain-like Organization of CuNi Alloy Nanoparticles: Solvent-Adoptable Pseudohomogeneous Catalysts for Alkyne–Azide Click Reactions with Magnetic Recyclability , 2014 .

[103]  Chung-Seop Lee,et al.  A novel self-assembling nanoparticle of Ag-Bi with high reactive efficiency. , 2014, Chemical communications.

[104]  Zi-kui Liu,et al.  The development of phase-based property data using the CALPHAD method and infrastructure needs , 2014, Integrating Materials and Manufacturing Innovation.

[105]  R. Whetten,et al.  Gold–Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation , 2014, Nano letters.

[106]  F. Ruiz-Zepeda,et al.  Cu-Ni nano-alloy: mixed, core-shell or Janus nano-particle? , 2014, Nanoscale.

[107]  G. Kaptay,et al.  Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations , 2014, Journal of Materials Engineering and Performance.

[108]  Yuanyuan Huang,et al.  Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. , 2014, ACS nano.

[109]  V. Ganesan,et al.  A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination , 2014 .

[110]  A. Shirinyan Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects , 2015, Beilstein journal of nanotechnology.

[111]  Zhichuan J. Xu,et al.  Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. , 2015, Small.

[112]  R. Ferrando Theoretical and computational methods for nanoalloy structure and thermodynamics , 2016 .

[113]  A. Shirinyan Concept of Size-Dependent Atomic Interaction Energies for Solid Nanomaterials: Thermodynamic and Diffusion Aspects , 2016 .

[114]  R. Whetten,et al.  Electrum, the Gold–Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules , 2015, ACS nano.

[115]  W. Qi Nanoscopic Thermodynamics. , 2016, Accounts of chemical research.

[116]  J. Joubert,et al.  Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition , 2016 .

[117]  W. Arabczyk,et al.  Hysteresis phenomenon in a reaction system of nanocrystalline iron and a mixture of ammonia and hydrogen. , 2016, Physical chemistry chemical physics : PCCP.

[118]  M. J. Arellano-Jimenez,et al.  Can Silver Be Alloyed with Bismuth on Nanoscale? An Optical and Structural Approach , 2017 .

[119]  M. José-Yacamán,et al.  Size and Shape Effects on the Phase Diagrams of Nickel-Based Bimetallic Nanoalloys , 2017 .

[120]  J. Rumble CRC Handbook of Chemistry and Physics , 2019 .