Relativistic Neutron Stars: Rheological Type Extensions of the Equations of State

Based on the Rheological Paradigm, we extend the equations of state for relativistic spherically symmetric static neutron stars, taking into consideration the derivative of the matter pressure along the so-called director four-vector. The modified equations of state are applied to the model of a zero-temperature neutron condensate. This model includes one new parameter with the dimensionality of length, which describes the rheological type screening inside the neutron star. As an illustration of the new approach, we consider the rheological type generalization of the non-relativistic Lane–Emden theory and find numerically the profiles of the pressure for a number of values of the new guiding parameter. We have found that the rheological type self-interaction makes the neutron star more compact, since the radius of the star, related to the first null of the pressure profile, decreases when the modulus of the rheological type guiding parameter grows.

[1]  J. Poutanen,et al.  Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method , 2015, 1509.06561.

[2]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[3]  V. Bochkarev,et al.  Archimedean-type force in a cosmic dark fluid: III. Big Rip, Little Rip and Cyclic solutions , 2012, 1212.4094.

[4]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[5]  J. Lattimer,et al.  The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.

[6]  M. Cheoun,et al.  Equation of state for neutron stars in SU(3) flavor symmetry , 2013, 1304.2121.

[7]  C. Eling,et al.  Neutron stars in Einstein-aether theory , 2007, 0705.1565.

[8]  S. Panahiyan,et al.  Modified TOV in gravity's rainbow: properties of neutron stars and dynamical stability conditions , 2015, 1509.05145.

[9]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[10]  H. Shen Complete relativistic equation of state for neutron stars , 2002, nucl-th/0202030.

[11]  Iu.N. Rabotnov Elements of hereditary solid mechanics , 1980 .

[12]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[13]  徳岡 辰雄 The Thermodynamics of Simple Materials With Fading Memory Springer Tracts in Natural Philosophy Volume 22, William Alan Day著, 16cm×24cm, 134頁, 1972年, Springer-Verlag , 1972 .

[14]  M. Rinaldi,et al.  Neutron stars in general second order scalar-tensor theory: The case of nonminimal derivative coupling , 2015, 1504.05189.

[15]  V. Bochkarev,et al.  ARCHIMEDEAN-TYPE FORCE IN A COSMIC DARK FLUID: I. EXACT SOLUTIONS FOR THE LATE-TIME ACCELERATED EXPANSION , 2010, 1012.2431.

[16]  S. Capozziello,et al.  Mass-radius relation for neutron stars in f(R) gravity , 2015, 1509.04163.

[17]  Werner Israel,et al.  Transient relativistic thermodynamics and kinetic theory , 1979 .

[18]  S. Capozziello,et al.  Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity , 2014, 1401.4546.

[19]  The new form of the equation of state for dark energy fluid and accelerating universe , 2006, hep-th/0606025.

[20]  W. Becker Neutron Stars and Pulsars , 2009 .

[21]  D. G. Yakovlev,et al.  Neutron Stars 1 : Equation of State and Structure , 2007 .

[22]  G. Baym,et al.  Physics of Neutron Stars , 1979 .

[23]  J. Lattimer,et al.  Neutron star observations: Prognosis for equation of state constraints , 2007 .

[24]  Gérard A. Maugin,et al.  The thermomechanics of nonlinear irreversible behaviors : an introduction , 1999 .

[25]  F. Llanes-Estrada,et al.  On neutron stars in $f(R)$ theories: Small radii, large masses and large energy emitted in a merger , 2016, 1602.03880.

[26]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[27]  L. Grigorian,et al.  Theory of superdense matter and degenerate stellar configurations , 1983 .

[28]  Philipp Roser,et al.  Gravitation and cosmology with York time , 2016, 1609.03942.

[29]  L. Lindblom Causal representations of neutron-star equations of state , 2018, Physical Review D.

[30]  D. Psaltis,et al.  Neutron Stars in f(R) Gravity with Perturbative Constraints , 2009, 0910.5480.

[31]  Rahul Jha,et al.  Neutron stars in screened modified gravity: Chameleon versus dilaton , 2017, 1702.02983.

[32]  Z. Niu,et al.  δ Meson Effects on Neutron Stars in the Modified Quark-Meson Coupling Model , 2008, 0805.1399.