The convex hull of finitely generable subsets and its predicate transformer
暂无分享,去创建一个
Abbas Edalat | André Lieutier | Mohammad Javad Davari | A. Lieutier | A. Edalat | Mohammad-Javad Davari
[1] Robert W. Floyd,et al. Assigning Meanings to Programs , 1993 .
[2] C. A. R. HOARE,et al. An axiomatic basis for computer programming , 1969, CACM.
[3] K. Hofmann,et al. Continuous Lattices and Domains , 2003 .
[4] V. Klee. Some topological properties of convex sets , 1955 .
[5] Marina L. Gavrilova,et al. Exact Computation of Delaunay and Power Triangulations , 2000, Reliab. Comput..
[6] Maarten Löffler,et al. Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.
[7] JOSEPH O’ROURKE,et al. A new linear algorithm for intersecting convex polygons , 1982, Comput. Graph. Image Process..
[8] Philipp Sünderhauf,et al. On the Duality of Compact vs. Open , 1996 .
[9] Xiang Lian,et al. Probabilistic ranked queries in uncertain databases , 2008, EDBT '08.
[10] Steven J. Vickers,et al. Geometric Logic in Computer Science , 1993, Theory and Formal Methods.
[11] Abbas Edalat,et al. Bounding the Attractor of an IFS , 1997, Inf. Process. Lett..
[12] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[13] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[14] Michael B. Smyth,et al. Effectively given Domains , 1977, Theor. Comput. Sci..
[15] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[16] Ali Asghar Khanban,et al. Basic algorithms in computational geometry with imprecise input , 2005 .
[17] J. V. Tucker,et al. Complete local rings as domains , 1988, Journal of Symbolic Logic (JSL).
[18] Pankaj K. Agarwal,et al. Convex Hulls Under Uncertainty , 2016, Algorithmica.
[19] Abbas Edalat,et al. Foundation of a computable solid modelling , 2002, Theor. Comput. Sci..
[20] Steven J. Vickers. Information Systems for Continuous Posets , 1993, Theor. Comput. Sci..
[21] Maarten Hendrikus van der Vlerk. Stochastic programming with integer recourse , 1995 .
[22] John C. Tipper,et al. Numerical Robustness in Geometric Computation: An Expository Summary , 2014 .
[23] Abbas Edalat,et al. Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.
[24] Abbas Edalat,et al. Foundation of a computable solid modeling , 1999, SMA '99.
[25] Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..
[26] Dana S. Scott,et al. Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.
[27] Carlo H. Séquin,et al. Consistent calculations for solids modeling , 1985, SCG '85.
[28] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[29] Jerzy W. Jaromczyk,et al. Computing Convex Hull in a Floating Point Arithmetic , 1994, Comput. Geom..
[30] Abbas Edalat,et al. Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..
[31] Edsger W. Dijkstra,et al. Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.
[32] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[33] Samson Abramsky,et al. Domain Theory in Logical Form , 1991, LICS.
[34] Michael B. Smyth. Power Domains , 1978, J. Comput. Syst. Sci..
[35] Michael B. Smyth,et al. Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.
[36] Anthony P. Leclerc,et al. Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..
[37] Abbas Edalat,et al. Power Domains and Iterated Function Systems , 1996, Inf. Comput..
[38] Olivier Devillers,et al. Algebraic methods and arithmetic filtering for exact predicates on circle arcs , 2000, SCG '00.
[39] Abbas Edalat,et al. Differentiation in logical form , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[40] Jean-Baptiste Hiriart-Urruty,et al. What is the subdifferential of the closed convex hull of a function , 1996 .
[41] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[42] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[43] Kurt Mehlhorn,et al. Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.
[44] Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra , 1989, 30th Annual Symposium on Foundations of Computer Science.
[45] Chee-Keng Yap,et al. Towards Exact Geometric Computation , 1997, Comput. Geom..
[46] Elham Kashefi,et al. The convex hull in a new model of computation , 2001, CCCG.