The convex hull of finitely generable subsets and its predicate transformer

We consider the domain of non-empty convex and compact subsets of a finite dimensional Euclidean space to represent partial or imprecise points in computational geometry. The convex hull map on such imprecise points is given domain-theoretically by an inner and an outer convex hull. We provide a practical algorithm to compute the inner convex hull when there are a finite number of convex polytopes as partial points. A notion of pre-inner support function is introduced, whose convex hull gives the support function of the inner convex hull in a general setting. We then show that the convex hull map is Scott continuous and can be extended to finitely generable subsets, represented by the Plotkin power domain of the underlying domain. This in particular allows us to compute, for the first time, the convex hull of attractors of iterated function systems in fractal geometry. Finally, we derive a program logic for the convex hull map in the sense of the weakest pre-condition for a given post-condition and show that the convex hull predicate transformer is computable.

[1]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[2]  C. A. R. HOARE,et al.  An axiomatic basis for computer programming , 1969, CACM.

[3]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[4]  V. Klee Some topological properties of convex sets , 1955 .

[5]  Marina L. Gavrilova,et al.  Exact Computation of Delaunay and Power Triangulations , 2000, Reliab. Comput..

[6]  Maarten Löffler,et al.  Largest and Smallest Convex Hulls for Imprecise Points , 2010, Algorithmica.

[7]  JOSEPH O’ROURKE,et al.  A new linear algorithm for intersecting convex polygons , 1982, Comput. Graph. Image Process..

[8]  Philipp Sünderhauf,et al.  On the Duality of Compact vs. Open , 1996 .

[9]  Xiang Lian,et al.  Probabilistic ranked queries in uncertain databases , 2008, EDBT '08.

[10]  Steven J. Vickers,et al.  Geometric Logic in Computer Science , 1993, Theory and Formal Methods.

[11]  Abbas Edalat,et al.  Bounding the Attractor of an IFS , 1997, Inf. Process. Lett..

[12]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[13]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[14]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[15]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[16]  Ali Asghar Khanban,et al.  Basic algorithms in computational geometry with imprecise input , 2005 .

[17]  J. V. Tucker,et al.  Complete local rings as domains , 1988, Journal of Symbolic Logic (JSL).

[18]  Pankaj K. Agarwal,et al.  Convex Hulls Under Uncertainty , 2016, Algorithmica.

[19]  Abbas Edalat,et al.  Foundation of a computable solid modelling , 2002, Theor. Comput. Sci..

[20]  Steven J. Vickers Information Systems for Continuous Posets , 1993, Theor. Comput. Sci..

[21]  Maarten Hendrikus van der Vlerk Stochastic programming with integer recourse , 1995 .

[22]  John C. Tipper,et al.  Numerical Robustness in Geometric Computation: An Expository Summary , 2014 .

[23]  Abbas Edalat,et al.  Computability of Partial Delaunay Triangulation and Voronoi Diagram , 2002, CCA.

[24]  Abbas Edalat,et al.  Foundation of a computable solid modeling , 1999, SMA '99.

[25]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[26]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[27]  Carlo H. Séquin,et al.  Consistent calculations for solids modeling , 1985, SCG '85.

[28]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[29]  Jerzy W. Jaromczyk,et al.  Computing Convex Hull in a Floating Point Arithmetic , 1994, Comput. Geom..

[30]  Abbas Edalat,et al.  Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..

[31]  Edsger W. Dijkstra,et al.  Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.

[32]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[33]  Samson Abramsky,et al.  Domain Theory in Logical Form , 1991, LICS.

[34]  Michael B. Smyth Power Domains , 1978, J. Comput. Syst. Sci..

[35]  Michael B. Smyth,et al.  Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[36]  Anthony P. Leclerc,et al.  Correct Delaunay Triangulation in the Presence of Inexact Inputs and Arithmetic , 2000, Reliab. Comput..

[37]  Abbas Edalat,et al.  Power Domains and Iterated Function Systems , 1996, Inf. Comput..

[38]  Olivier Devillers,et al.  Algebraic methods and arithmetic filtering for exact predicates on circle arcs , 2000, SCG '00.

[39]  Abbas Edalat,et al.  Differentiation in logical form , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[40]  Jean-Baptiste Hiriart-Urruty,et al.  What is the subdifferential of the closed convex hull of a function , 1996 .

[41]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[42]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[43]  Kurt Mehlhorn,et al.  Classroom Examples of Robustness Problems in Geometric Computations , 2004, ESA.

[44]  Bernard Chazelle An optimal algorithm for intersecting three-dimensional convex polyhedra , 1989, 30th Annual Symposium on Foundations of Computer Science.

[45]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[46]  Elham Kashefi,et al.  The convex hull in a new model of computation , 2001, CCCG.