Lateral interactions in the outer retina

Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.

[1]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[3]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[4]  P. O’Bryan,et al.  Properties of the depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina , 1973, The Journal of physiology.

[5]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[6]  N. Vardi,et al.  Differential expression of ionotropic glutamate receptor subunits in the outer retina , 1999, The Journal of comparative neurology.

[7]  D. Dacey,et al.  Horizontal Cell Feedback without Cone Type-Selective Inhibition Mediates “Red–Green” Color Opponency in Midget Ganglion Cells of the Primate Retina , 2011, The Journal of Neuroscience.

[8]  M. Bennett,et al.  Rapid and Direct Effects of pH on Connexins Revealed by the Connexin46 Hemichannel Preparation , 1999, The Journal of general physiology.

[9]  J. Dowling,et al.  Synapses of cone horizontal cell axons in goldfish retina , 1987, The Journal of comparative neurology.

[10]  H Ikeda,et al.  The outer disinhibitory surround of the retinal ganglion cell receptive field , 1972, The Journal of physiology.

[11]  J. Dowling,et al.  Synaptic organization of the frog retina: an electron microscopic analysis comparing the retinas of frogs and primates , 1968, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  T. Lamb,et al.  Spatial properties of horizontal cell responses in the turtle retina. , 1976, The Journal of physiology.

[13]  S. Massey,et al.  Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina , 1999, Visual Neuroscience.

[14]  Hong Wang,et al.  GABAA receptor binding and localization in the tiger salamander retina , 2000, Visual Neuroscience.

[15]  Origin of non-linearity of voltage-current relationships of turtle cones , 1979, Vision Research.

[16]  Heinz Wässle,et al.  Vesicular γ‐aminobutyric acid transporter expression in amacrine and horizontal cells , 2002 .

[17]  K. Yau,et al.  Intrinsic Light Response of Retinal Horizontal Cells of Teleosts , 2009, Nature.

[18]  R. Linsenmeier,et al.  Effects of picrotoxin and strychnine on non‐linear responses of Y‐type cat retinal ganglion cells. , 1982, The Journal of physiology.

[19]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[20]  W. G. Owen,et al.  Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. , 1996, Journal of neurophysiology.

[21]  Marco Piccolino,et al.  The feedback synapse from horizontal cells to cone photoreceptors in the vertebrate retina , 1995, Progress in Retinal and Eye Research.

[22]  P. Marchiafava,et al.  Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle , 1978, Nature.

[23]  P Sterling,et al.  Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase , 1994, Visual Neuroscience.

[24]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[25]  Ning Tian,et al.  Synaptic activity, visual experience and the maturation of retinal synaptic circuitry , 2008, The Journal of physiology.

[26]  P. Hammond Receptive field mechanisms of sustained and transient retinal ganglion cells in the cat , 1975, Experimental Brain Research.

[27]  P. Ahnelt,et al.  Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties. , 1990, Journal of neurophysiology.

[28]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[29]  E. Agardh,et al.  GABA immunoreactivity in the retina. , 1986, Investigative ophthalmology & visual science.

[30]  M. Piccolino,et al.  Lateral interactions in the outer plexiform layer of turtle retinas after atropine block of horizontal cells , 1977, Nature.

[31]  C. Enroth-Cugell,et al.  Effect of ambient illumination on the spatial properties of the center and surround of Y-cell receptive fields , 1993, Visual Neuroscience.

[32]  William H Baldridge,et al.  Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse , 2005, The Journal of Neuroscience.

[33]  J. Raynauld,et al.  Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in clone pedicules. , 1979, Science.

[34]  K. Ruddock,et al.  Effects of picrotoxin and strychine on fish retinal S-potentials: Evidence for inhibitory control of depolarizing responses , 1979, Neuroscience Letters.

[35]  γ‐Aminobutyric acid‐synthesizing cells in the retina of the chameleon Chamaeleo chameleon , 2003, Journal of neuroscience research.

[36]  Tomomi Ichinose,et al.  Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells , 2005, The Journal of physiology.

[37]  D. A. Burkhardt,et al.  Retinal bipolar cells: temporal filtering of signals from cone photoreceptors. , 2007, Visual neuroscience.

[38]  S. Wu,et al.  Receptive Fields of Retinal Bipolar Cells Are Mediated by Heterogeneous Synaptic Circuitry , 2009, The Journal of Neuroscience.

[39]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[40]  S. Mangel,et al.  Circadian Clock Regulation of pH in the Rabbit Retina , 2001, The Journal of Neuroscience.

[41]  Rusoff Ac,et al.  Development of receptive-field properties of retinal ganglion cells in kittens. , 1977 .

[42]  K. Tonosaki,et al.  Effect of polarisation of horizontal cells on the on-centre bipolar cell of carp retina , 1978, Nature.

[43]  D. A. Burkhardt,et al.  Effects of light adaptation on contrast processing in bipolar cells in the retina , 2001, Visual Neuroscience.

[44]  J. Kleinschmidt,et al.  Carrier-mediated release of GABA from retinal horizontal cells , 1983, Brain Research.

[45]  P. Barabas,et al.  Intracellular pH modulates inner segment calcium homeostasis in vertebrate photoreceptors. , 2011, American journal of physiology. Cell physiology.

[46]  R H Masland,et al.  Responses to acetylcholine of ganglion cells in an isolated mammalian retina. , 1976, Journal of neurophysiology.

[47]  W. R. Levick,et al.  Receptive fields of cat retinal ganglion cells with special reference to the Alpha cells , 1996, Progress in Retinal and Eye Research.

[48]  K. Donner Receptive fields of frog retinal ganglion cells: response formation and light‐dark‐adaptation. , 1981, The Journal of physiology.

[49]  S. Yazulla,et al.  GABA-like immunoreactivity in the vertebrate retina: a species comparison. , 1986, Experimental eye research.

[50]  J. Toyoda,et al.  Analyses of neural mechanisms mediating the effect of horizontal cell polarization , 1983, Vision Research.

[51]  J. Sahel,et al.  Cellular localization of the vesicular inhibitory amino acid transporter in the mouse and human retina , 2002, The Journal of comparative neurology.

[52]  S. Yazulla,et al.  Light adaptation of rod and cone luminosity horizontal cells of the retina of the goldfish , 1988, Brain Research.

[53]  J. Troy,et al.  The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research , 2002, Progress in Retinal and Eye Research.

[54]  N. Brecha,et al.  Plasmalemmal and vesicular γ‐aminobutyric acid transporter expression in the developing mouse retina , 2009, The Journal of comparative neurology.

[55]  Simon Laughlin,et al.  Extracellular Potentials Modify the Transfer of Information at Photoreceptor Output Synapses in the Blowfly Compound Eye , 2010, The Journal of Neuroscience.

[56]  J. Brandstätter,et al.  SNAP25 expression in mammalian retinal horizontal cells , 2011, The Journal of comparative neurology.

[57]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[58]  C. Ribelayga,et al.  Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina , 2003, The Journal of comparative neurology.

[59]  L. Diller,et al.  Spatial properties of the cat X-cell receptive field as a function of mean light level , 1999, Visual Neuroscience.

[60]  W. Pak,et al.  Light-Induced Changes in Photoreceptor Membrane Resistance and Potential in Gecko Retinas , 1974, The Journal of General Physiology.

[61]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[62]  D. Jameson,et al.  An opponent-process theory of color vision. , 1957, Psychological review.

[63]  W. Wang,et al.  Orientation biased extended surround of the receptive field of cat retinal ganglion cells , 2000, Neuroscience.

[64]  D. M. Lam,et al.  The identification and some functions of GABAergic neurons in the distal catfish retina , 1984, Vision Research.

[65]  H. Kolb,et al.  Synaptic organization of the outer plexiform layer of the turtle retina: an electron microscope study of serial sections , 1984, Journal of neurocytology.

[66]  D. A. Burkhardt,et al.  Center/surround organization of retinal bipolar cells: High correlation of fundamental responses of center and surround to sinusoidal contrasts , 2011, Visual Neuroscience.

[67]  E. A. Schwartz,et al.  Calcium‐independent release of GABA from isolated horizontal cells of the toad retina. , 1982, The Journal of physiology.

[68]  H. K. Hartline,et al.  INHIBITION IN THE EYE OF LIMULUS , 1956, The Journal of general physiology.

[69]  R. Normann,et al.  Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors , 1998, Progress in Retinal and Eye Research.

[70]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[71]  Q. Hoang,et al.  Functional analysis of hemichannels and gap-junctional channels formed by connexins 43 and 46 , 2010, Molecular vision.

[72]  Marta Muñoz,et al.  VA Opsin, Melanopsin, and an Inherent Light Response within Retinal Interneurons , 2003, Current Biology.

[73]  D. A. Burkhardt,et al.  Influences of cones upon chromatic‐ and luminosity‐type horizontal cells in pikeperch retinas. , 1978, The Journal of physiology.

[74]  E. A. Schwartz,et al.  Responses of bipolar cells in the retina of the turtle , 1974, The Journal of physiology.

[75]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[76]  Maarten Kamermans,et al.  Retinal horizontal cell‐specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5 , 2007, The Journal of comparative neurology.

[77]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[78]  N. Vardi,et al.  Regional differences in GABA and GAD immunoreactivity in rabbit horizontal cells , 1998, Visual Neuroscience.

[79]  Masahiro Yamada,et al.  Strongly pH-Buffered Ringer's Solution Expands the Receptive Field Size of Horizontal Cells in the Carp Retina , 2008, Zoological science.

[80]  W. Stell,et al.  Color‐specific interconnections of cones and horizontal cells in the retina of the goldfish , 1975, The Journal of comparative neurology.

[81]  W. H. Miller,et al.  C- and L-type horizontal cells in the turtle retina. , 1974, Vision research.

[82]  F. Werblin,et al.  The response properties of the steady antagonistic surround in the mudpuppy retina. , 1978, The Journal of physiology.

[83]  R. Wong,et al.  Assembly of the outer retina in the absence of GABA synthesis in horizontal cells , 2010, Neural Development.

[84]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[85]  P. Witkovsky,et al.  A chromatic horizontal cell in the Xenopus retina: intracellular staining and synaptic pharmacology. , 1990, Journal of neurophysiology.

[86]  R. Weiler,et al.  Light-dependent change of cone-horizontal cell interactions in carp retina , 1984, Brain Research.

[87]  H. Karten,et al.  GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells , 1991, Visual Neuroscience.

[88]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[89]  E. Yamoah,et al.  Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate , 2004, The Journal of physiology.

[90]  M. Fuortes,et al.  Interactions leading to horizontal cell responses in the turtle retina , 1974, The Journal of physiology.

[91]  K Naka,et al.  Signal transmission in the catfish retina. I. Transmission in the outer retina. , 1985, Journal of neurophysiology.

[92]  Maksimova Em Effect of intracellular polarization of horizontal cells of the activity of ganglionic cells of fish retina , 1969 .

[93]  R. Dacheux,et al.  Developmental characteristics of receptive organization in the isolated retina-eyecup of the rabbit , 1975, Brain Research.

[94]  M. Tachibana,et al.  Membrane properties of solitary horizontal cells isolated from goldfish retina. , 1981, The Journal of physiology.

[95]  F. Werblin Response of retinal cells to moving spots: intracellular recording in Necturus maculosus. , 1970, Journal of neurophysiology.

[96]  A. Kaneko,et al.  Modulation by Zn2+ of GABA responses in bipolar cells of the mouse retina , 2000, Visual Neuroscience.

[97]  H. Pease,et al.  On understanding the organisation of the retinal receptor synapses. , 1971, Brain research.

[98]  J. Pettigrew,et al.  Development of single-neuron responses in kitten's lateral geniculate nucleus. , 1978, Journal of neurophysiology.

[99]  S. Wu,et al.  Light‐ and dopamine‐regulated receptive field plasticity in primate horizontal cells , 2011, The Journal of comparative neurology.

[100]  M. Piccolino,et al.  Involvement of small-field horizontal cells in feedback effects on green cones of turtle retina. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[101]  L N Thibos,et al.  The properties of surround antagonism elicited by spinning windmill patterns in the mudpuppy retina. , 1978, The Journal of physiology.

[102]  E. Barrett,et al.  Vesicular ATPase Inserted into the Plasma Membrane of Motor Terminals by Exocytosis Alkalinizes Cytosolic pH and Facilitates Endocytosis , 2010, Neuron.

[103]  R. Dacheux,et al.  Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation , 1997, Visual Neuroscience.

[104]  K. Donner,et al.  Regulation of intracellular pH in salamander retinal rods. , 1997, The Journal of physiology.

[105]  Li Chao-Yi,et al.  Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells , 1992, Vision Research.

[106]  The rod-cone shift and its effect on ganglion cells in the cat's retina , 1992, Vision Research.

[107]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[108]  H. Qian,et al.  GABA receptors of bipolar cells from the skate retina: actions of zinc on GABA-mediated membrane currents. , 1997, Journal of neurophysiology.

[109]  E. A. Schwartz,et al.  Transport-mediated synapses in the retina. , 2002, Physiological reviews.

[110]  M. Hanani,et al.  Rod and cone signals in the horizontal cells of the tiger salamander retina. , 1980, The Journal of physiology.

[111]  H. Wässle,et al.  Glycine and GABA receptors in the mammalian retina , 1998, Vision Research.

[112]  D. Copenhagen,et al.  Localization and Developmental Expression Patterns of the Neuronal K–Cl Cotransporter (KCC2) in the Rat Retina , 2000, The Journal of Neuroscience.

[113]  R. Dacheux,et al.  Synaptic organization and ionic basis of on and off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells, and amacrine cells , 1976, The Journal of general physiology.

[114]  S. Barnes,et al.  Modulation of transmission gain by protons at the photoreceptor output synapse. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. Arvanitaki,et al.  EFFECTS EVOKED IN AN AXON BY THE ACTIVITY OF A CONTIGUOUS ONE , 1942 .

[116]  J. Toyoda,et al.  Color-opponent responses of small and giant bipolar cells in the carp retina. , 2000, Visual neuroscience.

[117]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[118]  Robert G. Smith,et al.  Maximizing contrast resolution in the outer retina of mammals , 2010, Biological Cybernetics.

[119]  Maarten Kamermans,et al.  Lateral Gain Control in the Outer Retina Leads to Potentiation of Center Responses of Retinal Neurons , 2009, The Journal of Neuroscience.

[120]  Kimberly K. Fong,et al.  Flow of energy in the outer retina in darkness and in light , 2010, Proceedings of the National Academy of Sciences.

[121]  B. Cleland,et al.  Quantitative aspects of gain and latency in the cat retina , 1970, The Journal of physiology.

[122]  C. Ribelayga,et al.  The Circadian Clock in the Retina Controls Rod-Cone Coupling , 2008, Neuron.

[123]  Dwight A Burkhardt,et al.  Natural images and contrast encoding in bipolar cells in the retina of the land- and aquatic-phase tiger salamander , 2006, Visual Neuroscience.

[124]  Stephen Yazulla Cone input to bipolar cells in the turtle retina , 1976, Vision Research.

[125]  J. Brandstätter,et al.  Cellular distribution and subcellular localization of molecular components of vesicular transmitter release in horizontal cells of rabbit retina , 2005, The Journal of comparative neurology.

[126]  Norbert Babai,et al.  Horizontal cell feedback regulates calcium currents and intracellular calcium levels in rod photoreceptors of salamander and mouse retina , 2009, The Journal of physiology.

[127]  C. M. Davenport,et al.  Effects of pH Buffering on Horizontal and Ganglion Cell Light Responses in Primate Retina: Evidence for the Proton Hypothesis of Surround Formation , 2008, The Journal of Neuroscience.

[128]  S. Barnes Center-surround Antagonism Mediated by Proton Signaling at the Cone Photoreceptor Synapse , 2003, The Journal of general physiology.

[129]  E. F. MacNichol,et al.  The Response Properties of Single Ganglion Cells in the Goldfish Retina , 1960, The Journal of general physiology.

[130]  K I Naka,et al.  gamma-Aminobutyric acid: a neurotransmitter candidate for cone horizontal cells of the catfish retina. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[131]  D. M. Lam,et al.  Biochemical and biophysical studies of isolated horizontal cells from the teleost retina , 1983, Vision Research.

[132]  H Spekreijse,et al.  The dynamic characteristics of the feedback signal from horizontal cells to cones in the goldfish retina , 2001, The Journal of physiology.

[133]  D. A. Burkhardt,et al.  Center-surround organization in bipolar cells: Symmetry for opposing contrasts , 2003, Visual Neuroscience.

[134]  S. Yazulla,et al.  Double-label analysis of GAD- and GABA-like immunoreactivity in the rabbit retina , 1987, Vision Research.

[135]  D. Copenhagen,et al.  Mixed rod-cone responses in horizontal cells of snapping turtle retina , 1979, Vision Research.

[136]  S. Massey,et al.  Rod and cone input to horizontal cells in the rabbit retina , 2007, The Journal of comparative neurology.

[137]  H. Kolb,et al.  Ultrastructural and functional connectivity of intracellularly stained neurones in the vertebrate retina: Correlative analyses , 1993, Microscopy research and technique.

[138]  James J. Chambers,et al.  A Positive Feedback Synapse from Retinal Horizontal Cells to Cone Photoreceptors , 2011, PLoS biology.

[139]  G. Matthews,et al.  Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming , 2011, Nature Neuroscience.

[140]  Richard H. Kramer,et al.  Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide , 1997, Nature.

[141]  J Gottesman,et al.  Prolonged depolarization in turtle cones evoked by current injection and stimulation of the receptive field surround. , 1988, The Journal of physiology.

[142]  R A Normann,et al.  The effects of GABA and related drugs on horizontal cells in the isolated turtle retina , 1990, Visual Neuroscience.

[143]  N. Kouyama,et al.  Electron microscopic study of synaptic contacts between photoreceptors and HRP‐filled horizontal cells in the turtle retina , 1986, The Journal of comparative neurology.

[144]  C. Ribelayga,et al.  Identification of a Circadian Clock-Controlled Neural Pathway in the Rabbit Retina , 2010, PloS one.

[145]  A Lasansky,et al.  Horizontal cell responses in the retina of the larval tiger salamander. , 1975, The Journal of physiology.

[146]  H. Barlow,et al.  Change of organization in the receptive fields of the cat's retina during dark adaptation , 1957, The Journal of physiology.

[147]  Hans-Joachim Wagner,et al.  Spinules: a case for retinal synaptic plasticity , 1993, Trends in Neurosciences.

[148]  M. Lazdunski,et al.  Silencing Acid-Sensing Ion Channel 1a Alters Cone-Mediated Retinal Function , 2006, The Journal of Neuroscience.

[149]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[150]  S. Haverkamp,et al.  Bipolar cell pathways for color vision in non-primate dichromats , 2010, Visual Neuroscience.

[151]  Andrey V Dmitriev,et al.  Electrical feedback in the cone pedicle: a computational analysis. , 2006, Journal of neurophysiology.

[152]  Akimichi Kaneko,et al.  pH Changes in the Invaginating Synaptic Cleft Mediate Feedback from Horizontal Cells to Cone Photoreceptors by Modulating Ca2+ Channels , 2003, The Journal of general physiology.

[153]  H. Wässle,et al.  The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. , 1983, The Journal of physiology.

[154]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[155]  Peter D Lukasiewicz,et al.  Synaptic mechanisms that shape visual signaling at the inner retina. , 2005, Progress in brain research.

[156]  H. Wagner,et al.  Plasticity of cone horizontal cell functioning in cyprinid fish retina: effects of background illumination of moderate intensity , 1988, Journal of neurocytology.

[157]  G. Mitarai,et al.  Receptive field arrangement of color-opponent bipolar and amacrine cells in the carp retina. , 1978, Sensory processes.

[158]  W. Eldred,et al.  Subcellular localization of neuronal nitric oxide synthase in turtle retina: Electron immunocytochemistry , 2001, Visual Neuroscience.

[159]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: changes in centre surround receptive fields. , 1978, The Journal of physiology.

[160]  Jonathon Shlens,et al.  Spatial Properties and Functional Organization of Small Bistratified Ganglion Cells in Primate Retina , 2007, The Journal of Neuroscience.

[161]  H. Ikeda,et al.  Transmitters mediating inhibition of ganglion cells in the cat retina: Iontophoretic studies in vivo , 1983, Neuroscience.

[162]  H. K. Hartline,et al.  INHIBITORY INTERACTION OF RECEPTOR UNITS IN THE EYE OF LIMULUS , 1957, The Journal of general physiology.

[163]  P. W. Nye,et al.  Role of horizontal cells in organization of the catfish retinal receptive field. , 1971, Journal of neurophysiology.

[164]  Karl R Gegenfurtner,et al.  Cone Contributions to Colour Constancy , 2002, Perception.

[165]  L. Pinto,et al.  Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus , 1974, The Journal of physiology.

[166]  Scott Nawy,et al.  cGMP-Dependent Kinase Regulates Response Sensitivity of the Mouse On Bipolar Cell , 2004, The Journal of Neuroscience.

[167]  J. Kleinschmidt Signal Transmission at the Photoreceptor Synapse , 1991 .

[168]  W. G. Owen,et al.  Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander. , 1990, The Journal of physiology.

[169]  M. Piccolino,et al.  Characteristics and ionic processes involved in feedback spikes of turtle cones , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[170]  H Spekreijse,et al.  The feedback pathway from horizontal cells to cones A mini review with a look ahead , 1999, Vision Research.

[171]  G. Svaetichin,et al.  The effects of maintained light stimulation on S‐potentials recorded from the retina of a teleost fish. , 1975, The Journal of physiology.

[172]  R C Barr,et al.  Electrophysiological interaction through the interstitial space between adjacent unmyelinated parallel fibers. , 1992, Biophysical journal.

[173]  A. L. Byzov,et al.  Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina , 1986, Vision Research.

[174]  C. Enroth-Cugell,et al.  Spatiotemporal frequency responses of cat retinal ganglion cells , 1987, The Journal of general physiology.

[175]  Ping Li,et al.  Glycine receptor subunit composition alters the action of GABA antagonists , 2007, Visual Neuroscience.

[176]  M. Kamermans,et al.  Pannexin1 in the outer retina of the zebrafish, Danio rerio , 2009, Neuroscience.

[177]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[178]  D. Lam,et al.  The release of gamma‐aminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. , 1984, The Journal of physiology.

[179]  A. Kaneko,et al.  Blocking effects of cobalt and related ions on the gamma‐aminobutyric acid‐induced current in turtle retinal cones. , 1986, The Journal of physiology.

[180]  H. Spekreijse,et al.  The Nature of Surround-Induced Depolarizing Responses in Goldfish Cones , 2000, The Journal of general physiology.

[181]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[182]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[183]  S. Wu Effects of gamma-aminobutyric acid on cones and bipolar cells of the tiger salamander retina , 1986, Brain Research.

[184]  Helga Kolb,et al.  The organization of the turtle inner retina. II. Analysis of color‐coded and directionally selective cells , 1995, The Journal of comparative neurology.

[185]  C. R. Michael Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. I: contrast-sensitive units. , 1968, Journal of neurophysiology.

[186]  E. A. Schwartz,et al.  Colour‐dependence of cone responses in the turtle retina , 1973, The Journal of physiology.

[187]  K. Naka,et al.  The cells horizontal cells talk to , 1982, Vision Research.

[188]  R. Weiler,et al.  Identification and localization of connexin26 within the photoreceptor-horizontal cell synaptic complex , 2001, Visual Neuroscience.

[189]  J. Flynn,et al.  Physiological properties of retinal ganglion cells of 3-week-old kittens , 1977, Vision Research.

[190]  C. Akerman,et al.  Spatial and Temporal Dynamics in the Ionic Driving Force for GABAA Receptors , 2011, Neural plasticity.

[191]  K I Naka,et al.  Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells , 1972, The Journal of physiology.

[192]  P. Witkovsky,et al.  Sub-millimolar cobalt selectively inhibits the receptive field surround of retinal neurons , 1999, Visual Neuroscience.

[193]  D. Dacey,et al.  The Classical Receptive Field Surround of Primate Parasol Ganglion Cells Is Mediated Primarily by a Non-GABAergic Pathway , 2004, The Journal of Neuroscience.

[194]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[195]  R. Jensen Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina , 1991, Visual Neuroscience.

[196]  C. Y. Yang,et al.  Localization of GABAA receptor subtypes in the tiger salamander retina , 1992, Visual Neuroscience.

[197]  H. Saito Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat's retina , 1983, Vision Research.

[198]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[199]  M Kamermans,et al.  The involvement of glutamate-gated channels in negative feedback from horizontal cells to cones. , 2005, Progress in brain research.

[200]  S. Barnes,et al.  Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. , 2004, Journal of neurophysiology.

[201]  A. Lasansky Organization of the outer synaptic layer in the retina of the larval tiger salamander. , 1973, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[202]  S. Trenholm,et al.  The effect of aminosulfonate buffers on the light responses and intracellular pH of goldfish retinal horizontal cells , 2010, Journal of neurochemistry.

[203]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[204]  Yang Xiongli.,et al.  Synaptic inputs from rods and cones to horizontal cells in the tiger salamander retina. , 1990 .

[205]  S. Haverkamp,et al.  ZO-1 and the Spatial Organization of Gap Junctions and Glutamate Receptors in the Outer Plexiform Layer of the Mammalian Retina , 2009, The Journal of Neuroscience.

[206]  S. Wu,et al.  Feedback connections and operation of the outer plexiform layer of the retina , 1992, Current Opinion in Neurobiology.

[207]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[208]  Helga Kolb,et al.  The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations , 1974, The Journal of comparative neurology.

[209]  Timm Schubert,et al.  Rod and Cone Contributions to Horizontal Cell Light Responses in the Mouse Retina , 2008, The Journal of Neuroscience.

[210]  P. Sterling,et al.  Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina , 1992, The Journal of comparative neurology.

[211]  R. Weiler,et al.  Contribution of connexin26 to electrical feedback inhibition in the turtle retina , 2003, The Journal of comparative neurology.

[212]  M. Kamermans,et al.  Postsynaptic localization of γ‐aminobutyric acid transporters and receptors in the outer plexiform layer of the goldfish retina: An ultrastructural study , 2004, The Journal of comparative neurology.

[213]  Timm Schubert,et al.  Horizontal cell receptive fields are reduced in connexin57‐deficient mice , 2006, The European journal of neuroscience.

[214]  H B Barlow,et al.  Threshold setting by the surround of cat retinal ganglion cells. , 1976, The Journal of physiology.

[215]  F. Baker,et al.  Extracellular Recordings from Human Retinal Ganglion Cells , 1971, Science.

[216]  G. Fain Interactions of rod and cone signals in the mudpuppy retina. , 1975, The Journal of physiology.

[217]  P. Sterling,et al.  Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA , 2000, The Journal of Neuroscience.

[218]  S. Picaud,et al.  GABAA and GABAC receptors in adult porcine cones: evidence from a photoreceptor‐glia co‐culture model , 1998, The Journal of physiology.

[219]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[220]  Bevil R. Conway,et al.  Color Vision, Cones, and Color-Coding in the Cortex , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[221]  Daniel González,et al.  Species specificity of mammalian connexin‐26 to form open voltage‐gated hemichannels , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[222]  W. Shen,et al.  Effects of prolonged darkness on light responsiveness and spectral sensitivity of cone horizontal cells in carp retina in vivo , 1994, Journal of Neuroscience.

[223]  Marvin N. Steijaert,et al.  Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels , 2011, PLoS biology.

[224]  R. Wong,et al.  Distinct Ionotropic GABA Receptors Mediate Presynaptic and Postsynaptic Inhibition in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[225]  R. Hanitzsch,et al.  The influence of HEPES on light responses of rabbit horizontal cells , 2001, Vision Research.

[226]  S. Baer,et al.  Background-induced flicker enhancement in cat retinal horizontal cells. II. Spatial properties. , 1990, Journal of neurophysiology.

[227]  S. Naghshineh,et al.  Action of glutamate and aspartate analogues on rod horizontal and bipolar cells , 1981, Nature.

[228]  M. Deschenes,et al.  Contribution of Ca and Ca-activated Cl channels to regenerative depolarization and membrane bistability of cone photoreceptors. , 1992, Journal of neurophysiology.

[229]  S. M. Wu,et al.  Modulation of horizontal cell function by GABAA and GABAC receptors in dark- and light-adapted tiger salamander retina , 1999, Visual Neuroscience.

[230]  R. Pochet,et al.  Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina. , 1989, Investigative ophthalmology & visual science.

[231]  S. Alford,et al.  Extracellular pH dynamics of retinal horizontal cells examined using electrochemical and fluorometric methods. , 2012, Journal of neurophysiology.

[232]  J. N. Hokoç,et al.  GABAergic system in the developing mammalian retina: dual sources of GABA at early stages of postnatal development , 1999, International Journal of Developmental Neuroscience.

[233]  J. Sahel,et al.  Mammalian retinal horizontal cells are unconventional GABAergic neurons , 2011, Journal of neurochemistry.

[234]  R. Tsien,et al.  Molecular basis of proton block of L-type Ca2+ channels , 1996, The Journal of general physiology.

[235]  M. Piccolino,et al.  Feed-back modulation of cone synapses by L-horizontal cells of turtle retina. , 1980, The Journal of experimental biology.

[236]  R. Marc,et al.  Amino acid signatures in the normal cat retina. , 1998, Investigative ophthalmology & visual science.

[237]  S. Bloomfield,et al.  Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina , 2000, The Journal of physiology.

[238]  Xiong-Li Yang Characterization of receptors for glutamate and GABA in retinal neurons , 2004, Progress in Neurobiology.

[239]  Yoichiro Tokutake,et al.  Retinal ganglion cells – spatial organization of the receptive field reduces temporal redundancy , 2008, The European journal of neuroscience.

[240]  D. A. Burkhardt The influence of center-surround antagonism on light adaptation in cones in the retina of the turtle , 1995, Visual Neuroscience.

[241]  H. K. Hartline,et al.  THE RESPONSES OF LIMULUS OPTIC NERVE FIBERS TO PATTERNS OF ILLUMINATION ON THE RECEPTOR MOSAIC , 1959, The Journal of general physiology.

[242]  J. Dowling,et al.  Intracellular recordings from gecko photoreceptors during light and dark adaptation , 1975, The Journal of general physiology.

[243]  W. G. Owen,et al.  Effects of bicarbonate versus HEPES buffering on measured properties of neurons in the salamander retina , 1998, Visual Neuroscience.

[244]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[245]  R A Normann,et al.  Oscillations in rod and horizontal cell membrane potential: evidence for feed‐back to rods in the vertebrate retina. , 1976, The Journal of physiology.

[246]  Y. Kwan,et al.  Interactions between H+ and Ca2+ near cardiac L-type calcium channels: evidence for independent channel-associated binding sites. , 1993, Biophysical journal.

[247]  Kwoon Y. Wong,et al.  Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. , 2005, Journal of neurophysiology.

[248]  J. Schnitzer,et al.  Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[249]  D. A. Burkhardt,et al.  Synaptic connections linking cones and horizontal cells in the retina of the pikeperch (Stizostedion vitreum) , 1979, The Journal of comparative neurology.

[250]  M. Bitzer,et al.  Guinea pig horizontal cells express GABA, the GABA‐synthesizing enzyme GAD65, and the GABA vesicular transporter , 2010, The Journal of comparative neurology.

[251]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[252]  M. Kamermans,et al.  Cobalt ions inhibit negative feedback in the outer retina by blocking hemichannels on horizontal cells , 2004, Visual Neuroscience.

[253]  J. Toyoda,et al.  Analyses of bipolar cell responses elicited by polarization of horizontal cells , 1982, The Journal of general physiology.

[254]  M. Kalloniatis,et al.  Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina , 1993, The Journal of comparative neurology.

[255]  G. Gamba Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. , 2005, Physiological reviews.

[256]  H. Wagner,et al.  Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas , 1980, Journal of neurocytology.

[257]  P. Lennie,et al.  The machinery of colour vision , 2007, Nature Reviews Neuroscience.

[258]  D. A. Burkhardt,et al.  Contrast processing by ON and OFF bipolar cells , 2010, Visual Neuroscience.

[259]  W. R. Taylor,et al.  Calcium Extrusion from Mammalian Photoreceptor Terminals , 1998, The Journal of Neuroscience.

[260]  E. Agardh,et al.  GABA and GAD-like immunoreactivity in the primate retina , 2004, Histochemistry.

[261]  S. Yazulla,et al.  Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas , 1989, The Journal of comparative neurology.

[262]  H. Qian,et al.  Properties of Connexin26 Hemichannels Expressed in Xenopus Oocytes , 2004, Cellular and Molecular Neurobiology.

[263]  Marco Piccolino,et al.  Calcium-independent release of neurotransmitter in the retina: a “Copernican” viewpoint change , 1999, Progress in Retinal and Eye Research.

[264]  S. Massey,et al.  Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina , 2004, The Journal of comparative neurology.

[265]  W. G. Owen,et al.  Effects of 2‐amino‐4‐phosphonobutyric acid on cells in the distal layers of the tiger salamander's retina. , 1992, The Journal of physiology.

[266]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[267]  M. Deans,et al.  Mouse Horizontal Cells do not Express Connexin26 or Connexin36 , 2001, Cell communication & adhesion.

[268]  S. Wu,et al.  Immunocytochemical analysis of GABA‐positive and calretinin‐positive horizontal cells in the tiger salamander retina , 2006, The Journal of comparative neurology.

[269]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[270]  A. Lasansky Synaptic Organization of Cone Cells in the Turtle Retina , 1971 .

[271]  H. Ripps,et al.  pH regulation in horizontal cells of the skate retina. , 1998, Experimental eye research.

[272]  Jian Zhang,et al.  Physiological properties of rod photoreceptor electrical coupling in the tiger salamander retina , 2005, The Journal of physiology.

[273]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[274]  Court Hull,et al.  Synaptic Cleft Acidification and Modulation of Short-Term Depression by Exocytosed Protons in Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[275]  W. Thoreson,et al.  Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings. , 2006, Journal of neurophysiology.

[276]  M. Kalloniatis,et al.  Localisation of amino acid neurotransmitters during postnatal development of the rat retina , 1997, The Journal of comparative neurology.

[277]  H. Kolb,et al.  The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations , 1977, Journal of neurocytology.

[278]  M. Piccolino,et al.  Sustained feedback effects of L-horizontal cells on turtle cones , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[279]  J. S. Tootle,et al.  Early postnatal development of visual function in ganglion cells of the cat retina. , 1993, Journal of neurophysiology.

[280]  R. Marc,et al.  Amino Acid Signatures in the Primate Retina , 1996, The Journal of Neuroscience.

[281]  D. A. Burkhardt,et al.  Ionic influences on the prolonged depolarization of turtle cones in situ. , 1991, Journal of neurophysiology.

[282]  D. A. Burkhardt,et al.  Response properties of C-type horizontal cells in the retina of the bowfin , 1987, Vision Research.

[283]  I. Perlman,et al.  Color opponency in horizontal cells of the vertebrate retina , 2003, Progress in Retinal and Eye Research.

[284]  J. Toyoda,et al.  Three types of horizontal cells in the stingray retina: Their morphology and physiology , 1978, The Journal of comparative neurology.

[285]  D. A. Burkhardt,et al.  Synaptic feedback, depolarization, and color opponency in cone photoreceptors , 1993, Visual Neuroscience.

[286]  L Maffei,et al.  Homeostasis in retinal receptive fields. , 1971, Journal of neurophysiology.

[287]  Maarten Kamermans,et al.  Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina , 2004, Current Opinion in Neurobiology.

[288]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[289]  Jayaram Chandrashekar,et al.  The Taste of Carbonation , 2009, Science.

[290]  S. Wu,et al.  Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. , 1991, Journal of neurophysiology.

[291]  W. Thoreson,et al.  Feedback from Horizontal Cells to Rod Photoreceptors in Vertebrate Retina , 2008, The Journal of Neuroscience.

[292]  P. Villa,et al.  Depolarizing effect of GABA in rod bipolar cells of the mouse retina , 2005, Vision Research.

[293]  K. Keyser,et al.  Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. , 2002, American journal of physiology. Cell physiology.

[294]  M. Kamermans,et al.  The contribution of the outer retina to color constancy: A general model for color constancy synthesized from primate and fish data , 2007, Visual Neuroscience.

[295]  Wei Li,et al.  Multiple Neuronal Connexins in the Mammalian Retina , 2003, Cell communication & adhesion.

[296]  S. Schaeffer,et al.  Membrane specializations in the outer plexiform layer of the turtle retina , 1982, The Journal of comparative neurology.

[297]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[298]  S. Mangel,et al.  Retinal pH reflects retinal energy metabolism in the day and night. , 2004, Journal of neurophysiology.

[299]  W. G. Owen,et al.  Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. , 1976, The Journal of physiology.

[300]  M. Chesler,et al.  Rapid rise of extracellular pH evoked by neural activity is generated by the plasma membrane calcium ATPase. , 2010, Journal of neurophysiology.

[301]  D. A. Burkhardt,et al.  Responses and receptive-field organization of cones in perch retinas. , 1977, Journal of neurophysiology.

[302]  P Lennie,et al.  The control of retinal ganglion cell discharge by receptive field surrounds. , 1975, The Journal of physiology.

[303]  J. Sahel,et al.  GABAC Receptors Are Localized with Microtubule-Associated Protein 1B in Mammalian Cone Photoreceptors , 2000, The Journal of Neuroscience.

[304]  S. Bloomfield,et al.  Dark‐ and light‐induced changes in coupling between horizontal cells in mammalian retina , 1999, The Journal of comparative neurology.

[305]  R. Pourcho,et al.  Distribution of GABA immunoreactivity in the cat retina: A light- and electron-microscopic study , 1989, Visual Neuroscience.

[306]  J. Dowling,et al.  Organization of vertebrate retinas. , 1970, Investigative ophthalmology.

[307]  A. Lasansky Contacts between receptors and electrophysiologically identified neurones in the retina of the larval tiger salamander , 1978, The Journal of physiology.

[308]  P. Sterling,et al.  Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina , 1994, Vision Research.

[309]  B. Boycott,et al.  Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[310]  K. Naka,et al.  The modes of chromatic interactions in the retina , 1977, Vision Research.

[311]  E M Lasater,et al.  A white-noise analysis of responses and receptive fields of catfish cones. , 1982, Journal of neurophysiology.

[312]  A Lasansky,et al.  Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. , 1981, The Journal of physiology.

[313]  S. Mangel,et al.  Modulation of cone to horizontal cell transmission by Calcium and pH in the fish retina , 1993, Visual Neuroscience.

[314]  Ernst Pöppel,et al.  Long-range colour-generating interactions across the retina , 1986, Nature.

[315]  S. Rees,et al.  Immunocytochemical development of the guinea pig retina. , 2005, Experimental eye research.

[316]  Xiong-Li Yang,et al.  Subcellular Localization and Complements of GABAA and GABAC Receptors on Bullfrog Retinal Bipolar Cells , 2000 .

[317]  J. Dowling,et al.  Synapses of Horizontal Cells in Rabbit and Cat Retinas , 1966, Science.

[318]  R. Dacheux,et al.  An intracellular electrophysiological study of the ontogeny of functional synapses in the rabbit retina. I. Receptors, horizontal, and bipolar cells , 1981, The Journal of comparative neurology.

[319]  R. Masland Maturation of function in the developing rabbit retina , 1977, The Journal of comparative neurology.

[320]  H. Spekreijse,et al.  Horizontal cells feed back to cones by shifting the cone calcium-current activation range , 1996, Vision Research.

[321]  M. Slaughter,et al.  Effects of GABA receptor antagonists on retinal glycine receptors and on homomeric glycine receptor alpha subunits. , 2005, Journal of neurophysiology.

[322]  Usha Chakravarthy,et al.  Complement Factor H Y402h and Age-Related Macular Degeneration (amd) in India: Results From the Indeye Study , 2010 .

[323]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[324]  D. Copenhagen,et al.  Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[325]  Heinz Wässle,et al.  The Cone Pedicle, a Complex Synapse in the Retina , 2000, Neuron.

[326]  Maarten Kamermans,et al.  Hemichannel-Mediated and pH-Based Feedback from Horizontal Cells to Cones in the Vertebrate Retina , 2009, PloS one.

[327]  Paul R. Martin,et al.  Retinal connectivity and primate vision , 2010, Progress in Retinal and Eye Research.

[328]  J. Brandstätter,et al.  Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes , 2007, Visual Neuroscience.

[329]  F S Werblin,et al.  Lateral Interactions at Inner Plexiform Layer of Vertebrate Retina: Antagonistic Responses to Change , 1972, Science.

[330]  F. Werblin,et al.  A sign‐reversing pathway from rods to double and single cones in the retina of the tiger salamander. , 1983, The Journal of physiology.

[331]  I. Perlman,et al.  Neural interactions between cone photoreceptors and horizontal cells in the turtle (Mauremys caspica) retina , 1998, Visual Neuroscience.

[332]  H. Wässle,et al.  Synaptic clustering of GABAC receptor ρ‐subunits in the rat retina , 1998, The European journal of neuroscience.

[333]  R. C. Rentería,et al.  Receptive field center size decreases and firing properties mature in ON and OFF retinal ganglion cells after eye opening in the mouse. , 2011, Journal of neurophysiology.

[334]  C. Brandon Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decar☐ylase , 1985, Brain Research.

[335]  Y. Zana,et al.  UV responses in the retina of the turtle , 1999, Visual Neuroscience.

[336]  M. Wasowicz,et al.  Differential expression of GAD65 and GAD67 during the development of the rat retina , 2001, Brain Research.

[337]  S. Halford,et al.  Functional diversity of melanopsins and their global expression in the teleost retina , 2011, Cellular and Molecular Life Sciences.

[338]  R. Miller,et al.  Physiological and morphological correlations of horizontal cells in the mudpuppy retina. , 1992, Journal of neurophysiology.

[339]  W. Eldred,et al.  Functional localization of the nitric oxide/cGMP pathway in the salamander retina , 2009, Visual Neuroscience.

[340]  L. Cervetto,et al.  Effects of applied currents on turtle cones in darkness and during the photoresponse. , 1977, The Journal of physiology.

[341]  A Kaneko,et al.  Effects of gamma‐aminobutyric acid on isolated cone photoreceptors of the turtle retina. , 1986, The Journal of physiology.

[342]  M. Neal,et al.  Effect of excitatory amino acids on gamma‐aminobutyric acid release from frog horizontal cells. , 1985, The Journal of physiology.

[343]  J. Dowling,et al.  Organization of retina of the mudpuppy, Necturus maculosus. I. Synaptic structure. , 1969, Journal of neurophysiology.

[344]  H. Sakai,et al.  Synaptic organization of the cone horizontal cells in the catfish retina , 1986, The Journal of comparative neurology.

[345]  P. Barabas,et al.  Calcium Homeostasis and Cone Signaling Are Regulated by Interactions between Calcium Stores and Plasma Membrane Ion Channels , 2009, PloS one.

[346]  D. A. Burkhardt,et al.  Effects of synaptic blocking agents on the depolarizing responses of turtle cones evoked by surround illumination , 1990, Visual Neuroscience.

[347]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[348]  S. Hemilä,et al.  pH Changes in Frog Rods upon Manipulation of Putative pH-regulating Transport Mechanisms , 1996, Vision Research.

[349]  D. Attwell,et al.  Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells , 2002, The Journal of physiology.

[350]  B. Oakley,et al.  Extracellular pH in the isolated retina of the toad in darkness and during illumination. , 1989, The Journal of physiology.

[351]  Masahiro Yamada,et al.  Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V‐ATPase , 2007, The Journal of physiology.

[352]  S. Fisher,et al.  Ultrastructural evidence that horizontal cell axon terminals are presynaptic in the human retina , 1988, The Journal of comparative neurology.

[353]  K. Negishi,et al.  Lateral spread of S-potential components in the carp retina. , 1982, Experimental eye research.

[354]  P. W. Nye,et al.  The dynamics of inhibitory interaction in a frog receptive field: a paradigm of paracontrast. , 1971, Vision research.

[355]  E. A. Schwartz,et al.  A cGMP-gated current can control exocytosis at cone synapses , 1994, Neuron.

[356]  A. V. Maricq,et al.  Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors , 1988, Neuron.

[357]  D. M. Lam,et al.  The content and release of endogenous GABA in isolated horizontal cells of the goldfish retina , 1985, Vision Research.

[358]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[359]  A. Kaneko Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina , 1970, The Journal of physiology.

[360]  S. Watanabe,et al.  GABA-mediated negative feedback from horizontal cells to cones in carp retina. , 1982, The Japanese journal of physiology.

[361]  J Gottesman,et al.  Prolonged depolarization in rods in situ , 1991, Visual Neuroscience.

[362]  S. M. Wu,et al.  A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina. , 1984, The Journal of physiology.

[363]  A. Hurlbert,et al.  Color contrast: a contributory mechanism to color constancy. , 2004, Progress in brain research.

[364]  F. Werblin,et al.  Lateral interactions in absence of feedback to cones. , 1983, Journal of neurophysiology.

[365]  Hiroko M. Sakai,et al.  Chapter 6 Neuron network in catfish retina: 1968–1987 , 1988 .

[366]  H. Wässle,et al.  GABA‐like immunoreactivity in the cat retina: Electron microscopy , 1989, The Journal of comparative neurology.

[367]  D. Hubel,et al.  Receptive fields of optic nerve fibres in the spider monkey , 1960, The Journal of physiology.

[368]  A Lasansky,et al.  Lateral contacts and interactions of horizontal cell dendrites in the retina of the larval tiger salamander , 1980, The Journal of physiology.

[369]  P. Witkovsky,et al.  Center-surround organization of Xenopus horizontal cells and its modification by gamma-aminobutyric acid and strontium. , 1987, Experimental biology.

[370]  S. M. Wu,et al.  Feedforward lateral inhibition in retinal bipolar cells: input-output relation of the horizontal cell-depolarizing bipolar cell synapse. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[371]  F. Müller,et al.  Type 3a and type 3b OFF cone bipolar cells provide for the alternative rod pathway in the mouse retina , 2007, The Journal of comparative neurology.

[372]  S. Stone,et al.  Physiological and morphological properties of OFF- and ON-center bipolar cells in the Xenopus retina: Effects of glycine and GABA , 1991, Visual Neuroscience.

[373]  R. Eckhorn,et al.  Dynamic aspects of cat retinal ganglion cell's centre and surround mechanisms: A white noise analysis , 1981, Vision Research.

[374]  P Lennie,et al.  Surround contribution to light adaptation in cat retinal ganglion cells. , 1975, The Journal of physiology.

[375]  C. Mitchell,et al.  GABAA receptor immunoreactivity is transiently expressed in the developing outer retina , 1999, Visual Neuroscience.

[376]  J. Du,et al.  Functional GABAB receptors are expressed at the cone photoreceptor terminals in bullfrog retina , 2005, Neuroscience.

[377]  S. Yazulla,et al.  Heterogeneity of GABAA receptor in goldfish retina , 1994, The Journal of comparative neurology.

[378]  N. Kouyama,et al.  Synaptic contacts between red-sensitive cones and triphasic chromaticity horizontal cells in the turtle retina , 1985, Brain Research.

[379]  Akimichi Kaneko,et al.  Intracellular chloride concentration is higher in rod bipolar cells than in cone bipolar cells of the mouse retina , 2001, Neuroscience Letters.

[380]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[381]  D. Jameson,et al.  Mach bands : quantitative studies on neural networks in the retina , 1966 .

[382]  W. Thoreson,et al.  Chloride equilibrium potential in salamander cones , 2004, BMC Neuroscience.

[383]  M. Piccolino,et al.  Activation of a regenerative calcium conductance in turtle cones by peripheral stimulation , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[384]  Jang-Yen Wu,et al.  Immunocytochemical localization of l-glutamate decar☐ylase, gamma-aminobutyric acid transaminase, cysteine sulfinic acid decar☐ylase, aspartate aminotransferase and somatostatin in rat retina , 1983, Brain Research.

[385]  F. Yamamoto,et al.  Effects of light and darkness on pH outside rod photoreceptors in the cat retina. , 1992, Experimental eye research.

[386]  R Shapley,et al.  Spatial and temporal properties of luminosity horizontal cells in the turtle retina , 1983, The Journal of general physiology.

[387]  J. Russell Sodium-potassium-chloride cotransport. , 2000, Physiological reviews.

[388]  S. Massey,et al.  Localization of nitric oxide synthase, NADPH diaphorase and soluble guanylyl cyclase in adult rabbit retina , 1998, Visual Neuroscience.

[389]  Ethan A. Benardete,et al.  Chapter 2 The dynamics of primate retinal ganglion cells , 2001 .

[390]  H. Wässle,et al.  GABAA Receptor subunits have differential distributions in the rat retinae: In situ hybridization and immunohistochemistry , 1995, The Journal of comparative neurology.

[391]  S. Wu,et al.  Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. , 2010, Investigative ophthalmology & visual science.

[392]  J. L. Schnapf,et al.  Blue-Yellow Opponency in Primate S Cone Photoreceptors , 2010, The Journal of Neuroscience.

[393]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[394]  H Ripps,et al.  S-Potentials in the Skate Retina , 1971, The Journal of general physiology.

[395]  Kristian Donner,et al.  Center and surround excitation in the receptive fields of frog retinal ganglion cells , 1984, Vision Research.

[396]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[397]  W. Stell,et al.  Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses , 1975, Science.

[398]  H. Wässle,et al.  Localization of GABAA receptors in the rabbit retina , 1994, Cell and Tissue Research.

[399]  Gordon L. Fain,et al.  ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light , 2008, Current Biology.

[400]  S. Barnes,et al.  Proton modulation of ion channels in isolated horizontal cells of the goldfish retina , 2007, The Journal of physiology.

[401]  P. Sterling,et al.  "Collective coding" of correlated cone signals in the retinal ganglion cell. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[402]  N. Brecha,et al.  Immunocytochemical evidence for SNARE protein‐dependent transmitter release from guinea pig horizontal cells , 2010, The European journal of neuroscience.

[403]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[404]  C. Karwoski,et al.  Light-evoked changes in extracellular pH in frog retina , 1989, Vision Research.

[405]  Geng-Lin Li,et al.  An Ionotropic GABA Receptor with Novel Pharmacology at Bullfrog Cone Photoreceptor Terminals , 2006, Neurosignals.

[406]  Peter J. S. Smith,et al.  Modulation of Extracellular Proton Fluxes from Retinal Horizontal Cells of the Catfish by Depolarization and Glutamate , 2007, The Journal of general physiology.

[407]  J. L. Schnapf,et al.  Surround Antagonism in Macaque Cone Photoreceptors , 2003, Journal of Neuroscience.

[408]  Josh L. Morgan,et al.  Laminar circuit formation in the vertebrate retina. , 2005, Progress in brain research.

[409]  E. MacNichol,et al.  Inactivation of Horizontal Cells in Turtle Retina by Glutamate and Aspartate , 1972, Science.

[410]  R. Dacheux,et al.  Intracellular chloride in retinal neurons: Measurement and meaning , 1983, Vision Research.

[411]  D. Copenhagen,et al.  Vesicular Neurotransmitter Transporter Expression in Developing Postnatal Rodent Retina: GABA and Glycine Precede Glutamate , 2003, The Journal of Neuroscience.

[412]  C. Bevans,et al.  Regulation of Connexin Channels by pH , 1999, The Journal of Biological Chemistry.

[413]  K. Standifer,et al.  Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina , 2006, BMC Neuroscience.

[414]  S. Mangel,et al.  A circadian clock regulates the pH of the fish retina , 2000, The Journal of physiology.

[415]  H Spekreijse,et al.  Receptive Field Organization of the S-Potential , 1968, Science.

[416]  Yu Wang,et al.  A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[417]  D. A. Burkhardt Light adaptation and contrast in the outer retina. , 2001, Progress in brain research.

[418]  A. Kaneko,et al.  GABA-mediated component in the feedback response of turtle retinal cones , 2005, Visual Neuroscience.

[419]  M. Piccolino,et al.  Galileo's Eye: A New Vision of the Senses in the Work of Galileo Galilei , 2008, Perception.

[420]  A. Kaneko,et al.  Retinal bipolar cells with double colour-opponent receptive fields , 1981, Nature.

[421]  Donald B. Dixon,et al.  l-Glutamate suppresses HVA calcium current in catfish horizontal cells by raising intracellular proton concentration , 1993, Neuron.

[422]  A. Lasansky Cell junctions at the outer synaptic layer of the retina. , 1972, Investigative ophthalmology.

[423]  M. J. M. Lankheet,et al.  The dynamics of light adaptation in cat horizontal cell responses , 1993, Vision Research.

[424]  Karl R. Gegenfurtner,et al.  Selective Color Constancy Deficits after Circumscribed Unilateral Brain Lesions , 1999, The Journal of Neuroscience.

[425]  S. Barnes,et al.  Modulation of calcium-activated chloride current via pH-induced changes of calcium channel properties in cone photoreceptors , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[426]  S. Yazulla Endocannabinoids in the retina: From marijuana to neuroprotection , 2008, Progress in Retinal and Eye Research.