Acoustofluidic methods in cell analysis.

Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.

[1]  A. Neild,et al.  Continuous Focusing of Microparticles in Horizontally Actuated Rectangular Channels , 2018, Physical Review Applied.

[2]  Henrik Bruus,et al.  Acoustofluidics 7: The acoustic radiation force on small particles. , 2012, Lab on a chip.

[3]  J. Friend,et al.  Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization , 2014, Respiratory Research.

[4]  Yi-Xian Qin,et al.  Mechanobiological Modulation of Cytoskeleton and Calcium Influx in Osteoblastic Cells by Short-Term Focused Acoustic Radiation Force , 2012, PloS one.

[5]  M. Ward,et al.  Fundamentals of Acoustic Cytometry , 2009, Current protocols in cytometry.

[6]  P. Glynne-Jones,et al.  Generation of functional hepatocyte 3D discoids in an acoustofluidic bioreactor. , 2019, Biomicrofluidics.

[7]  Long Meng,et al.  Acoustic tweezers , 2019, Journal of Physics D: Applied Physics.

[8]  A. deMello,et al.  Acoustic Compressibility of Caenorhabditis elegans. , 2018, Biophysical journal.

[9]  Francesco Costanzo,et al.  Probing Cell Deformability via Acoustically Actuated Bubbles. , 2016, Small.

[10]  M Halliwell,et al.  Sonoporation, drug delivery, and gene therapy , 2010, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[11]  Yang Liu,et al.  On-chip measurements of cell compressibility via acoustic radiation. , 2011, Lab on a chip.

[12]  Tony Jun Huang,et al.  Standing Surface Acoustic Wave Based Cell Coculture , 2014, Analytical chemistry.

[13]  C. Lim,et al.  Biomechanics approaches to studying human diseases. , 2007, Trends in biotechnology.

[14]  R. Pethig Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells , 1996 .

[15]  Subra Suresh,et al.  Measuring single-cell density , 2011, Proceedings of the National Academy of Sciences.

[16]  Peng Li,et al.  Probing circulating tumor cells in microfluidics. , 2013, Lab on a chip.

[17]  Bin Chen,et al.  High-throughput acoustofluidic fabrication of tumor spheroids. , 2019, Lab on a chip.

[18]  H. Wyss,et al.  Monocytic Cells Become Less Compressible but More Deformable upon Activation , 2014, PloS one.

[19]  J. Reboud,et al.  Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays. , 2015, Analytical chemistry.

[20]  Martyn Hill,et al.  Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering , 2014, Lab on a chip.

[21]  S. Dong,et al.  Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications , 2013, Scientific Reports.

[22]  J. Dual,et al.  Rotation of fibers and other non-spherical particles by the acoustic radiation torque , 2015 .

[23]  Martin Wiklund,et al.  Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. , 2012, Lab on a chip.

[24]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[25]  C. Deng,et al.  Spatiotemporally controlled single cell sonoporation , 2012, Proceedings of the National Academy of Sciences.

[26]  Subra Suresh,et al.  Biomechanics and biophysics of cancer cells. , 2007, Acta biomaterialia.

[27]  Thomas Schwarz,et al.  Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes. , 2013, The Journal of the Acoustical Society of America.

[28]  W. Pang,et al.  In-line trapping and rotation of bio-particles via 3-D micro-vortices generated by localized ultrahigh frequency acoustic resonators , 2017, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[29]  Leslie Y Yeo,et al.  High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. , 2018, Lab on a chip.

[30]  A. Neild,et al.  Bubble inducing cell lysis in a sessile droplet , 2014 .

[31]  Thomas Laurell,et al.  Forthcoming Lab on a Chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. , 2011, Lab on a chip.

[32]  Peng Li,et al.  Controlling cell–cell interactions using surface acoustic waves , 2014, Proceedings of the National Academy of Sciences.

[33]  A. Kundt Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen , 1866 .

[34]  T. Huang,et al.  Cell separation using tilted-angle standing surface acoustic waves , 2014, Proceedings of the National Academy of Sciences.

[35]  E. Peterman,et al.  Single-Cell Acoustic Force Spectroscopy: Resolving Kinetics and Strength of T Cell Adhesion to Fibronectin. , 2018, Cell reports.

[36]  P. Mazzarello A unifying concept: the history of cell theory , 1999, Nature Cell Biology.

[37]  Leslie Y Yeo,et al.  Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. , 2015, Biomicrofluidics.

[38]  H. Wergeland,et al.  Acoustic Radiation Force , 1958 .

[39]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[40]  C. Visser,et al.  Microbubbles and ultrasound: from diagnosis to therapy. , 2004, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[41]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[42]  James Friend,et al.  Particle concentration and mixing in microdrops driven by focused surface acoustic waves , 2008 .

[43]  Henrik Bruus,et al.  Acoustofluidics 1: Governing equations in microfluidics. , 2011, Lab on a chip.

[44]  Electra Gizeli,et al.  Design considerations for the acoustic waveguide biosensor , 1997 .

[45]  W. Nyborg Acoustic Streaming near a Boundary , 1958 .

[46]  James Friend,et al.  Efficient Subculture Process for Adherent Cells by Selective Collection Using Cultivation Substrate Vibration , 2017, IEEE Transactions on Biomedical Engineering.

[47]  H. Gest The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society , 2004, Notes and Records of the Royal Society of London.

[48]  Wei Pang,et al.  Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device. , 2017, Small.

[49]  T. Huang,et al.  Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans. , 2019, Lab on a chip.

[50]  R. Barnes,et al.  Visual Methods for Studying Ultrasonic Phenomena , 1949 .

[51]  Joel Voldman,et al.  Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping , 2016, Nature Communications.

[52]  Yuliang Xie,et al.  Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. , 2013, Lab on a chip.

[53]  A. Sen,et al.  Improved Understanding of Acoustophoresis and Development of an Acoustofluidic Device for Blood Plasma Separation , 2018, Physical Review Applied.

[54]  T Laurell,et al.  Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis. , 2014, Lab on a chip.

[55]  Peng Li,et al.  Surface acoustic wave microfluidics. , 2013, Lab on a chip.

[56]  I-Kao Chiang,et al.  Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). , 2011, Lab on a chip.

[57]  Gina Greco,et al.  Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures. , 2018, Analytical chemistry.

[58]  Alison Stopeck,et al.  Circulating tumor cells, disease progression, and survival in metastatic breast cancer. , 2004, The New England journal of medicine.

[59]  Herbert Shea,et al.  Acoustophoretic synchronization of mammalian cells in microchannels. , 2010, Analytical chemistry.

[60]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[61]  James Friend,et al.  Cell agglomeration in the wells of a 24-well plate using acoustic streaming. , 2017, Lab on a chip.

[62]  Vivien Marx,et al.  Biophysics: using sound to move cells , 2014, Nature Methods.

[63]  Baiyang Ren,et al.  Reusable acoustic tweezers for disposable devices. , 2015, Lab on a chip.

[64]  A. Sen,et al.  Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis. , 2018, Lab on a chip.

[65]  R. Olson,et al.  Imaging FlowCytobot modified for high throughput by in‐line acoustic focusing of sample particles , 2017 .

[66]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[67]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[68]  Angeliki Tserepi,et al.  SAW device integrated with microfluidics for array-type biosensing , 2009 .

[69]  Flow Cytometry: Definition, History, and Uses in Biological Research , 2018 .

[70]  Dino Di Carlo,et al.  A mechanical biomarker of cell state in medicine. , 2012 .

[71]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[72]  R. G. Austin,et al.  Clinical utility of non-EpCAM based circulating tumor cell assays. , 2018, Advanced drug delivery reviews.

[73]  Leslie Y Yeo,et al.  Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. , 2009, Lab on a chip.

[74]  M. Fulwyler,et al.  Electronic Separation of Biological Cells by Volume , 1965, Science.

[75]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[76]  Subra Suresh,et al.  Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. , 2018, Small.

[77]  K. Isselbacher,et al.  Isolation of circulating tumor cells using a microvortex-generating herringbone-chip , 2010, Proceedings of the National Academy of Sciences.

[78]  Klavs F Jensen,et al.  Microfluidics-based assessment of cell deformability. , 2012, Analytical chemistry.

[79]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[80]  Po-Hsun Huang,et al.  Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells , 2019, Science Advances.

[81]  Thomas Laurell,et al.  Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. , 2012, Lab on a chip.

[82]  Leslie Y. Yeo,et al.  Acoustically-mediated intracellular delivery. , 2018, Nanoscale.

[83]  D. Ingber,et al.  From 3D cell culture to organs-on-chips. , 2011, Trends in cell biology.

[84]  D. Go,et al.  On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis. , 2015, Lab on a chip.

[85]  Lin Wang,et al.  A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. , 2014, Lab on a chip.

[86]  Gregory Goddard,et al.  Ultrasonic particle concentration in a line-driven cylindrical tube. , 2003, The Journal of the Acoustical Society of America.

[87]  Cheri X Deng,et al.  Ultrasound-induced cell membrane porosity. , 2004, Ultrasound in medicine & biology.

[88]  Po-Hsun Huang,et al.  Digital acoustofluidics enables contactless and programmable liquid handling , 2018, Nature Communications.

[89]  Peng Li,et al.  Acoustic tweezers for the life sciences , 2018, Nature Methods.

[90]  R. Kiesslich,et al.  Confocal laser endomicroscopy: technical status and current indications , 2006, Endoscopy.

[91]  H. Lilja,et al.  Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. , 2012, Analytical chemistry.

[92]  Xiasheng Guo,et al.  Enriching Nanoparticles via Acoustofluidics. , 2017, ACS nano.

[93]  High throughput imaging cytometer with acoustic focussing. , 2015, RSC advances.

[94]  D. Heitjan,et al.  Use of circulating tumor cell technology (CELLSEARCH) for the diagnosis of malignant pleural effusions. , 2013, Annals of the American Thoracic Society.

[95]  Hyung Jin Sung,et al.  Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. , 2015, Lab on a chip.

[96]  A. Neild,et al.  Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave. , 2017, Lab on a chip.

[97]  Martyn Hill,et al.  Acoustically modulated biomechanical stimulation for human cartilage tissue engineering. , 2018, Lab on a chip.

[98]  Peng Li,et al.  A sharp-edge-based acoustofluidic chemical signal generator. , 2018, Lab on a chip.

[99]  C. Antfolk,et al.  A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells. , 2015, Lab on a chip.

[100]  S. Manalis,et al.  Non-invasive monitoring of single-cell mechanics by acoustic scattering , 2019, Nature Methods.

[101]  Steven W Graves,et al.  Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[102]  Yong‐Joe Kim,et al.  A continuous-flow acoustofluidic cytometer for single-cell mechanotyping. , 2019, Lab on a chip.

[103]  Maria Bondesson,et al.  Acoustic assembly of cell spheroids in disposable capillaries , 2018, Nanotechnology.

[104]  F. Arai,et al.  High-throughput label-free molecular fingerprinting flow cytometry , 2019, Science Advances.

[105]  Peng Li,et al.  Applications of Acoustofluidics in Bioanalytical Chemistry. , 2018, Analytical chemistry.

[106]  Michael Wirth,et al.  An acoustically-driven biochip - impact of flow on the cell-association of targeted drug carriers. , 2009, Lab on a chip.

[107]  Peng Li,et al.  An acoustofluidic sputum liquefier. , 2015, Lab on a chip.

[108]  Aydogan Ozcan,et al.  Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. , 2014, Lab on a chip.

[109]  T. Huang,et al.  Acoustic separation of circulating tumor cells , 2015, Proceedings of the National Academy of Sciences.

[110]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[111]  David J. Collins,et al.  Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves , 2015, Nature Communications.

[112]  Mostafa Ghannad-Rezaie,et al.  A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. , 2014, Small.

[113]  L A Herzenberg,et al.  Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[114]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[115]  Hai Fu,et al.  Acoustofluidic devices controlled by cell phones. , 2018, Lab on a chip.

[116]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[117]  F. Romanato,et al.  A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. , 2016, Lab on a chip.

[118]  T. Huang,et al.  On-chip stool liquefaction via acoustofluidics. , 2019, Lab on a chip.

[119]  N. Gilula,et al.  The Gap Junction Communication Channel , 1996, Cell.

[120]  Yao Lu,et al.  Hypersonic poration of supported lipid bilayers , 2019, Materials Chemistry Frontiers.

[121]  James Friend,et al.  Surface Acoustic Wave Microfluidics , 2014 .

[122]  Leslie Yeo,et al.  Surface acoustic streaming in microfluidic system for rapid multicellular tumor spheroids generation , 2013, Smart Materials, Nano-, and Micro- Smart Systems.

[123]  R. Olson,et al.  A fluorescence‐activated cell sorting subsystem for the Imaging FlowCytobot , 2017 .

[124]  J. Rao,et al.  Nanomechanical analysis of cells from cancer patients. , 2007, Nature nanotechnology.

[125]  Tuncay Alan,et al.  Particle separation using virtual deterministic lateral displacement (vDLD). , 2014, Lab on a chip.

[126]  Monika Ritsch-Marte,et al.  Acoustic force spectroscopy , 2014, Nature Methods.

[127]  C. Culbertson,et al.  Cellular Analysis Using Microfluidics. , 2018, Analytical chemistry.

[128]  Tony Pawson,et al.  Protein modules and signalling networks , 1995, Nature.

[129]  Takao Sugiyama,et al.  Sonoporation: Gene transfer using ultrasound. , 2013, World journal of methodology.

[130]  Hai Fu,et al.  Open source acoustofluidics. , 2019, Lab on a chip.

[131]  A. Manz,et al.  Acoustofluidic Chemical Waveform Generator and Switch , 2014, Analytical chemistry.

[132]  Peter R. C. Gascoyne,et al.  Dielectrophoretic manipulation of particles , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[133]  Po-Hsun Huang,et al.  Acoustofluidic Transfer of Inflammatory Cells from Human Sputum Samples. , 2016, Analytical chemistry.

[134]  James Friend,et al.  Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. , 2018, Lab on a chip.

[135]  Yuliang Xie,et al.  Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer. , 2012, Analytical chemistry.

[136]  David J Collins,et al.  Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. , 2016, Analytical chemistry.

[137]  Joseph Rufo,et al.  Acoustofluidic separation of cells and particles , 2019, Microsystems & Nanoengineering.

[138]  Bradley J. Nelson,et al.  Controlled Three-dimensional Rotation of Single Cells Using Acoustic Waves , 2017 .

[139]  Gijs J. L. Wuite,et al.  Probing cellular mechanics with acoustic force spectroscopy , 2018, Molecular biology of the cell.

[140]  Seung‐Woo Cho,et al.  High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy , 2018, Nature Communications.

[141]  Rui Zhang,et al.  Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. , 2016, Lab on a chip.

[142]  E. Peterman,et al.  Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. , 2016, Methods.

[143]  Thomas C. Ferrante,et al.  Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro , 2015, Nature Methods.

[144]  Steven W Graves,et al.  Analytical performance of an ultrasonic particle focusing flow cytometer. , 2007, Analytical chemistry.

[145]  Controlled and Tunable Loading and Release of Vesicles by Using Gigahertz Acoustics , 2018, Angewandte Chemie.

[146]  J. Friend,et al.  Nozzleless spray cooling using surface acoustic waves , 2015 .

[147]  A. Wixforth,et al.  Acoustotaxis -in vitro stimulation in a wound healing assay employing surface acoustic waves. , 2016, Biomaterials science.

[148]  D. Planchard,et al.  A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas , 2011, British Journal of Cancer.

[149]  Subra Suresh,et al.  Isolation of exosomes from whole blood by integrating acoustics and microfluidics , 2017, Proceedings of the National Academy of Sciences.

[150]  Chung Yu Chan,et al.  Probing cell-cell communication with microfluidic devices. , 2013, Lab on a chip.

[151]  Thomas Laurell,et al.  Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. , 2015, Analytical chemistry.

[152]  Daniel Ahmed,et al.  Rotational manipulation of single cells and organisms using acoustic waves , 2016, Nature Communications.

[153]  D A Weitz,et al.  Surface acoustic wave actuated cell sorting (SAWACS). , 2010, Lab on a chip.

[154]  Hsueh-Chia Chang,et al.  Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective. , 2017, Analytical methods : advancing methods and applications.

[155]  Po-Hsun Huang,et al.  Acoustofluidic Rotational Manipulation of Cells and Organisms Using Oscillating Solid Structures. , 2016, Small.