Compact Silicon Electro-Optical Modulator Using Hybrid ITO Tri-Coupled Waveguides

Silicon based electro-optical modulators are essential for optical communication systems. In this paper, we present a silicon electro-optical modulator, which is based on tri-coupled waveguides. Two of these waveguides are silicon-on-insulator slot waveguides separated by a hybrid Indium Tin Oxide intermediate waveguide. The silicon-on-insulator slot waveguides reaps the advantages of the high mode confinement. The power-splitting mechanism can be electrically tuned through applying external electric field to the intermediate plasmonic waveguide. The tuning mechanism is designed such that it will both change the coupling conditions and introduces additional intrinsic losses at the telecommunication wavelength (1550 nm). The modulator was optimized by three-dimensional full finite difference time domain electromagnetic simulations. Extinction ratio of 6.14 dB and insertion losses of 0.06 dB are realized at 21 μm modulator length; as well as, extinction ratio of 11.43 dB and insertion losses of 1.65 dB are realized at 34 μm modulator length. The proposed silicon electro-optical modulator can potentially play a key role in the next generation of the onchip electronic-photonic integrated circuits.

[1]  Mohamed A. Swillam,et al.  Hybrid plasmonic electro-optical modulator , 2016 .

[2]  M. Watts,et al.  Ultralow power silicon microdisk modulators and switches , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[3]  S. Libertino,et al.  Electro-Optical Modulators in Silicon , 2006 .

[4]  H. R. Philipp,et al.  Silicon Dioxide (SiO2) (Glass) , 1997 .

[5]  Anthony L Lentine,et al.  Vertical junction silicon microdisk modulators and switches. , 2011, Optics express.

[6]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[7]  Emmanouil E. Kriezis,et al.  Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model , 2017 .

[8]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[9]  M. Salib,et al.  Phase modulation efficiency and transmission loss of silicon optical phase shifters , 2005, IEEE Journal of Quantum Electronics.

[10]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[11]  N. Feng,et al.  Wavelength-tunable silicon microring modulator. , 2010, Optics express.

[12]  Antao Chen,et al.  Broadband optical modulators : science, technology, and applications , 2011 .

[13]  U. Koch,et al.  Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides , 2016, IEEE Photonics Journal.

[14]  Sadao Adachi,et al.  a-Silicon (a-Si) , 1999 .

[15]  D M Gill,et al.  A 25 Gbps silicon microring modulator based on an interleaved junction. , 2012, Optics express.

[16]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[17]  Viktoriia E. Babicheva,et al.  Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. , 2013, Optics express.

[18]  N. A. Wasley Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits , 2013 .

[19]  Junghyun Park,et al.  Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. , 2013, Optics express.

[20]  Jin-Soo Kim,et al.  Silicon electro-optic modulator based on an ITO-integrated tunable directional coupler , 2016 .

[21]  Volker J. Sorger,et al.  λ-Size ITO and Graphene-Based Electro-Optic Modulators on SOI , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Mitsuru Takenaka,et al.  Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators , 2013, Scientific Reports.

[23]  A. Helmy,et al.  Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics , 2015, Scientific Reports.

[24]  M.K. Emsley,et al.  High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates , 2002, IEEE Photonics Technology Letters.

[25]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[26]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[27]  Min Qiu,et al.  Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. , 2010, Optics express.

[28]  D L Wood,et al.  Optical properties of cubic hafnia stabilized with yttria. , 1990, Applied optics.

[29]  Larry R. Dalton,et al.  Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V , 2008 .

[30]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[31]  F Y Gardes,et al.  40 Gb/s silicon photonics modulator for TE and TM polarisations. , 2011, Optics express.

[32]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[33]  A Porch,et al.  Basic materials physics of transparent conducting oxides. , 2004, Dalton transactions.

[34]  David J. Thomson,et al.  Silicon optical modulators , 2010 .