Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers

Optical selection rules in monolayers of transition metal dichalcogenides and of their heterostructures are determined by the conservation of the z-component of the total angular momentum—JZ = LZ+SZ – associated with the C3 rotational lattice symmetry which assumes half integer values corresponding, modulo 3, to distinct states. Here we show, based on polarization resolved and low temperature magneto-optical spectroscopy experiments, that the conservation of the total angular momentum in these systems leads to a very efficient exciton-phonon interaction when the coupling is mediated through chiral phonons. We identify these phonons as the Γ point E” modes which despite carrying angular momentum ± 1 are able to induce an excitonic spin-flip of ∓2 thanks to the C3 symmetry. These experiments reveal the crucial role of electron-phonon interaction in the carrier dynamics of group 6 transition metal dichalcogenides.

[1]  Jiaqiang Yan,et al.  Valley phonons and exciton complexes in a monolayer semiconductor , 2020, Nature Communications.

[2]  B. Gerardot,et al.  Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface , 2019, npj 2D Materials and Applications.

[3]  D. Smirnov,et al.  Giant Valley-Zeeman Splitting from Spin-Singlet and Spin-Triplet Interlayer Excitons in WSe2/MoSe2 Heterostructure. , 2019, Nano letters.

[4]  D. Smirnov,et al.  Electrically controlled emission from triplet charged excitons in atomically thin heterostructures , 2019, 1912.07678.

[5]  D. Smirnov,et al.  Momentum-Dark Intervalley Exciton in Monolayer Tungsten Diselenide Brightened via Chiral Phonon. , 2019, ACS nano.

[6]  Chan-Shan Yang,et al.  Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons , 2019, Nature Physics.

[7]  C. Hellberg,et al.  Commensurate structures in twisted transition metal dichalcogenide heterobilayers , 2019, 1909.02495.

[8]  Yia-Chung Chang,et al.  Valley-selective chiral phonon replicas of dark excitons and trions in monolayer WSe2 , 2019, Physical Review Research.

[9]  Chan-Shan Yang,et al.  Resolving spin, valley, and moiré quasi-angular momentum of interlayer excitons in WSe2/WS2 heterostructures , 2019, 1902.05887.

[10]  C. Robert,et al.  Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature , 2018, Physical Review B.

[11]  T. Taniguchi,et al.  Fine structure of K-excitons in multilayers of transition metal dichalcogenides , 2018, 2D Materials.

[12]  Xiaodong Xu,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[13]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[14]  Lifa Zhang,et al.  Chiral phonons in two-dimensional materials , 2018, 2D Materials.

[15]  A. Srivastava,et al.  Entanglement of single-photons and chiral phonons in atomically thin WSe2 , 2018, Nature Physics.

[16]  A. Morpurgo,et al.  Semiconducting van der Waals Interfaces as Artificial Semiconductors. , 2018, Nano letters.

[17]  H. Jeng,et al.  Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers , 2018, Nature Communications.

[18]  W. Yao,et al.  Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers , 2018, 1803.01292.

[19]  Orbital, spin and valley contributions to Zeeman splitting of excitonic resonances in MoSe 2 , WSe 2 and WS 2 Monolayers , 2018, 2D Materials.

[20]  Y. Wang,et al.  Observation of chiral phonons , 2018, Science.

[21]  Di Xiao,et al.  Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems. , 2017, Physical review letters.

[22]  Xiaodong Xu,et al.  Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor. , 2017, Physical review letters.

[23]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[24]  A. Jang,et al.  Correction to Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[25]  C. Robert,et al.  In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. , 2017, Physical review letters.

[26]  C. Strunk,et al.  Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures , 2017, Nature Communications.

[27]  A. Jang,et al.  Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. , 2017, ACS nano.

[28]  F. Jahnke,et al.  Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.

[29]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[30]  M. Lukin,et al.  Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. , 2017, Nature nanotechnology.

[31]  Ying Wang,et al.  Magnetic brightening and control of dark excitons in monolayer WSe2. , 2016, Nature nanotechnology.

[32]  D. Basko,et al.  Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides , 2016, 1612.02867.

[33]  A. Bruchhausen,et al.  Resonance effects in the Raman scattering of monolayer and few-layer MoSe 2 , 2016, 1603.05172.

[34]  C. Robert,et al.  Splitting between bright and dark excitons in transition metal dichalcogenide monolayers , 2016, 1601.07351.

[35]  Lifa Zhang,et al.  Chiral phonons at high-symmetry points in monolayer hexagonal lattices. , 2015, Physical review letters.

[36]  Xiaodong Xu,et al.  Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. , 2015, Chemical Society reviews.

[37]  Aaron M. Jones,et al.  Supplementary Materials Magnetic Control of Valley Pseudospin in Monolayer WSe2 , 2014, 1407.2645.

[38]  Andras Kis,et al.  Valley Zeeman effect in elementary optical excitations of monolayer WSe2 , 2014, Nature Physics.

[39]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[40]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[41]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[42]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[43]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[44]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[45]  C. Kloc,et al.  Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2 , 2013 .

[46]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[47]  Yugui Yao,et al.  Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides , 2013, 1305.6089.

[48]  H. Dery,et al.  Transport theory of monolayer transition-metal dichalcogenides through symmetry. , 2013, Physical review letters.

[49]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[50]  A. Mahmood,et al.  Circular dichroism of magnetophonon resonance in doped graphene , 2012, 1207.6943.

[51]  D. Basko,et al.  Electronic excitations and electron-phonon coupling in bulk graphite through Raman scattering in high magnetic fields , 2011, 1110.4262.

[52]  V. Fal’ko,et al.  Signature of electronic excitations in the Raman spectrum of graphene , 2009, 0906.5251.

[53]  B. Lax,et al.  Theory of Optical Magneto-Absorption Effects in Semiconductors , 1959 .