Solar System Science with ESA Euclid

The ESA Euclid mission has been designed to map the geometry of the dark Universe. Scheduled for launch in 2020, it will conduct a six-years visible and NIR imaging and spectroscopic survey over 15,000 deg 2 down to mag~24.5. Although the survey will avoid low ecliptic latitudes, the survey pattern in repeated sequences of four broad-band filters seems well-adapted to Solar System objects (SSOs) detection and characterization. We aim at evaluating Euclid capability to discover SSOs, and measure their position, apparent magnitude, and SED. Also, we investigate how these measurements can lead to the determination of their orbits, morphology, physical properties, and surface composition. We use current census of SSOs to estimate the number of SSOs detectable by Euclid. Then we estimate how Euclid will constrain the SSOs dynamical, physical, and compositional properties. With current survey design, about 150,000 SSOs, mainly from the asteroid main-belt, should be observed by Euclid. These objects will all have high inclination. There is a potential for discovery of several 10,000 SSOs, in particular KBOs at high declination. Euclid observations will refine the spectral classification of SSOs by extending the spectral coverage provided by, e.g. Gaia and the LSST to 2 microns. The time-resolved photometry, combined with sparse photometry will contribute to the determination of SSO rotation period, spin orientation, and shape model. The sharp and stable point-spread function of Euclid will also allow to resolve KBO binary systems and detect activity around Centaurs. The depth of Euclid survey, its spectral coverage, and observation cadence has great potential for Solar System research. A dedicated processing for SSOs is being set in place to produce catalogs of astrometry, multi-color and time-resolved photometry, and spectral classification of some 10$^5$ SSOs, delivered as Legacy Science.

[1]  David Jewitt The Active Centaurs , 2006 .

[2]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy , 2002 .

[3]  C. Baltay,et al.  Wide-Field InfraRed Survey Telescope WFIRST Final Report , 2012 .

[4]  D. A. Oszkiewicz,et al.  Asteroid taxonomic signatures from photometric phase curves , 2012, 1202.2270.

[5]  Robert Jedicke,et al.  Evidence for asteroid space weathering from the Sloan Digital Sky Survey , 2005 .

[6]  A. Harris,et al.  The population of near-Earth asteroids , 2000 .

[7]  Michele T. Bannister,et al.  OSSOS III—RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS FROM THE FIRST QUARTER OF THE OUTER SOLAR SYSTEM ORIGINS SURVEY , 2015, 1604.08177.

[8]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[9]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[10]  J. Hanuš,et al.  The potential of sparse photometric data in asteroid shape modeling , 2012 .

[11]  S. Kulkarni,et al.  313 NEW ASTEROID ROTATION PERIODS FROM PALOMAR TRANSIENT FACTORY OBSERVATIONS , 2014, 1405.1144.

[12]  J. D. Rhodes,et al.  Solar system science with the Wide-Field Infrared Survey Telescope , 2017, Journal of Astronomical Telescopes, Instruments, and Systems.

[13]  P. Michel,et al.  Rotational breakup as the origin of small binary asteroids , 2008, Nature.

[14]  M. W. Buie,et al.  DE-BIASED POPULATIONS OF KUIPER BELT OBJECTS FROM THE DEEP ECLIPTIC SURVEY , 2012, 1311.3250.

[15]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[16]  David Jewitt,et al.  The Active Asteroids , 2011 .

[17]  E. Deul,et al.  DENIS: A deep near-infrared survey of the southern sky , 1994 .

[18]  R. Roy,et al.  Photometric Survey of Binary Near-Earth Asteroids , 2006 .

[19]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[20]  Zeljko Ivezic,et al.  Asteroid Families in the Sloan Digital Sky Survey Moving Object Catalog , 2002 .

[21]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[22]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[23]  Enrique Solano,et al.  Spectral properties of near-Earth and Mars-crossing asteroids using Sloan photometry , 2016, 1601.02087.

[24]  J. E. Gunn,et al.  Color Confirmation of Asteroid Families , 2002 .

[25]  D. C. Jewitt,et al.  Population and Size Distribution of Small Jovian Trojan Asteroids , 2000, astro-ph/0004117.

[26]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[27]  A. Doressoundiram,et al.  Integral-field spectroscopy of (90482) Orcus-Vanth , 2011, 1108.5963.

[28]  Chile,et al.  Characterisation of candidate members of (136108) Haumea's family , 2009, 0912.3171.

[29]  R. Jedicke,et al.  The Orbital and Absolute Magnitude Distributions of Main Belt Asteroids , 1998 .

[30]  R. Duffard,et al.  S3OS2: the visible spectroscopic survey of 820 asteroids , 2004 .

[31]  Karen J. Meech,et al.  CENTAURS AND SCATTERED DISK OBJECTS IN THE THERMAL INFRARED: ANALYSIS OF WISE/NEOWISE OBSERVATIONS , 2013, 1306.1862.

[32]  D. Rabinowitz,et al.  Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL61 , 2005 .

[33]  Munetaka Ueno,et al.  Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey , 2011 .

[34]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[35]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[36]  Mikko Kaasalainen,et al.  Physical models of large number of asteroids from calibrated photometry sparse in time , 2004 .

[37]  J. Licandro,et al.  Near-infrared colors of minor planets recovered from VISTA - VHS survey (MOVIS) , 2016, 1605.05594.

[38]  David Jewitt,et al.  Project Pan-STARRS and the Outer Solar System , 2003 .

[39]  Michael Marsset,et al.  All planetesimals born near the Kuiper belt formed as binaries , 2017, Nature Astronomy.

[40]  Francesca DeMeo,et al.  The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys , 2013, 1307.2424.

[41]  Benoit Carry,et al.  Characterisation of candidate members of (136108) Haumea's family II. Follow-up observations , 2009, 0912.3171.

[42]  Igor Molotov,et al.  Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries , 2012 .

[43]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[44]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[45]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[46]  Joel Parker,et al.  CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES , 2011, 1108.2505.

[47]  Fumi Yoshida,et al.  Size Distribution of Faint Jovian L4 Trojan Asteroids , 2005 .

[48]  B. Carry,et al.  Asteroid Models from Multiple Data Sources , 2015, 1502.04816.

[49]  B. J. Butler,et al.  Solar system science with SKA , 2004 .

[50]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[51]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[52]  G. Duvert,et al.  Discovery of a moon orbiting the asteroid 45 Eugenia , 1999, Nature.

[53]  D. Souami,et al.  A multidomain approach to asteroid families’ identification , 2013, 1305.4847.

[54]  A. Fitzsimmons,et al.  The nucleus of Comet 67P/Churyumov-Gerasimenko. A new shape model and thermophysical analysis , 2012 .

[55]  J. Margot,et al.  Asteroid Systems: Binaries, Triples, and Pairs , 2015, 1504.00034.

[56]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[57]  M. E. Brown,et al.  THE SIZE, DENSITY, AND FORMATION OF THE ORCUS–VANTH SYSTEM IN THE KUIPER BELT , 2009, 0910.4784.

[58]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[59]  E. Ofek,et al.  ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY , 2015, 1504.04041.

[60]  Lance A. M. Benner,et al.  ORBITS OF NEAR-EARTH ASTEROID TRIPLES 2001 SN263 AND 1994 CC: PROPERTIES, ORIGIN, AND EVOLUTION , 2010, 1012.2154.

[61]  J. Berthier,et al.  Physical and dynamical properties of the main belt triple asteroid (87) Sylvia , 2014, 1407.1292.

[62]  Zeljko Ivezic,et al.  Color Variability of Asteroids in SDSS Moving Object Catalog , 2003 .

[63]  M. T. Bannister,et al.  OSSOS. II. A SHARP TRANSITION IN THE ABSOLUTE MAGNITUDE DISTRIBUTION OF THE KUIPER BELT’S SCATTERING POPULATION , 2015, 1511.02896.

[64]  Martin Connors,et al.  Evidence for a Color Dependence in the Size Distribution of Main-Belt Asteroids , 2007 .

[65]  Karri Muinonen,et al.  Optimization Methods for Asteroid Lightcurve Inversion. II. The Complete Inverse Problem , 2001 .

[66]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[67]  Larry Denneau,et al.  Asteroid Models from the Pan-STARRS Photometry , 2006 .

[68]  Richard P. Binzel,et al.  Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: The Observations , 2002 .

[69]  Daniel J. Scheeres,et al.  Radar and optical observations and physical modeling of triple near-Earth Asteroid (136617) 1994 CC , 2011 .

[70]  J. Veverka,et al.  Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida , 1995, Nature.

[71]  Robert Jedicke,et al.  On the asteroid belt's orbital and size distribution , 2009 .

[72]  S. Debei,et al.  Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.

[73]  E. O. Ofek,et al.  Asteroid rotation periods from the Palomar Transient Factory survey , 2012, 1201.1930.

[74]  Michael Marsset,et al.  THE OUTER SOLAR SYSTEM ORIGINS SURVEY. I. DESIGN AND FIRST-QUARTER DISCOVERIES , 2015, 1511.02895.

[75]  S. Hellmich,et al.  The small binary asteroid (939) Isberga , 2014, 1411.0872.

[76]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[77]  Daniel J. Scheeres,et al.  Asteroid Interiors and Morphology , 2015 .

[78]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[79]  A. V. Sergeev,et al.  Formation of asteroid pairs by rotational fission , 2010, Nature.

[80]  M. E. Brown,et al.  Satellites of the largest Kuiper Belt objects , 2006 .

[81]  David E. Trilling,et al.  Space weathering of small Koronis family asteroids in the SDSS Moving Object Catalog , 2012 .

[82]  Tero Säntti,et al.  Streak detection and analysis pipeline for space-debris optical images , 2016 .

[83]  B. Carry,et al.  Mining the Kilo-Degree Survey for solar system objects , 2017, 1711.02780.

[84]  F. Merlin,et al.  Taxonomy of trans-Neptunian objects and Centaurs as seen from spectroscopy , 2017 .

[85]  C. Van Laerhoven,et al.  The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component , 2016, 1608.02873.

[86]  A. Vagnozzi,et al.  New and updated convex shape models of asteroids based on optical data from a large collaboration network , 2015, 1510.07422.

[87]  P. Tanga,et al.  Collisions and Gravitational Reaccumulation: Forming Asteroid Families and Satellites , 2001, Science.

[88]  E. L. Wright,et al.  NEOWISE STUDIES OF SPECTROPHOTOMETRICALLY CLASSIFIED ASTEROIDS: PRELIMINARY RESULTS , 2011, 1109.6407.

[89]  Paolo Tanga,et al.  Asteroid spectroscopy with Gaia , 2012 .

[90]  A. Fitzsimmons,et al.  The size distribution of Jupiter Family comet nuclei , 2003, 1101.4228.

[91]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[92]  M. Granvik,et al.  The Gaia Mission: Expected Applications to Asteroid Science , 2007 .

[93]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS , 2011, 1110.0280.

[94]  M. L. N. Ashby,et al.  THE RESONANT TRANS-NEPTUNIAN POPULATIONS , 2012, 1205.7065.

[95]  Stephan D. Price,et al.  The 2MASS Asteroid and Comet Survey , 1999 .

[96]  Angioletta Coradini,et al.  Classification of asteroids using G-mode analysis , 1987 .

[97]  Robert Jedicke,et al.  Super-catastrophic disruption of asteroids at small perihelion distances , 2016, Nature.

[98]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[99]  A. Santerne,et al.  Prediction of transits of solar system objects in Kepler /K2 images: An extension of the Virtual Observatory service SkyBoT , 2016, 1602.07153.

[100]  David Jewitt,et al.  The Solar System Beyond Neptune , 1995 .

[101]  Richard P. Binzel,et al.  Unexpected D-type interlopers in the inner main belt , 2013, 1312.2962.

[102]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[103]  Siegfried Eggl,et al.  Refinement of Near Earth Asteroids’ orbital elements via simultaneous measurements by two observers , 2011 .

[104]  J. Berthier,et al.  The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor , 2014 .

[105]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[106]  K. Walsh,et al.  Formation and Evolution of Binary Asteroids , 2015, 1506.06689.

[107]  P. H. Hasselmann,et al.  SDSS-based taxonomic classification and orbital distribution of main belt asteroids , 2010 .