High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer

The authors develop a hydrogenated protocrystalline silicon (pc-Si:H)/hydrogenated microcrystalline silicon (μc-Si:H) double-junction solar cell structure employing a boron-doped zinc oxide (ZnO:B) intermediate layer. Highly stable intrinsic pc-Si:H and μc-Si:H absorbers are prepared by a 60MHz very-high-frequency plasma-enhanced chemical vapor deposition technique. Degenerate ZnO:B intermediate and back reflectors are deposited via a metal organic chemical vapor deposition technique. Because the ZnO:B intermediate layer reduces the potential thickness for the pc-Si:H absorber in the top cell, this double-juncion structure is a promising candidate to fabricate highly stable Si-based thin-film solar cells. Consequently, the high conversion efficiency of 12.0% is achieved.

[1]  A. Matsuda,et al.  Origin of the Improved Performance of High-Deposition-Rate Microcrystalline Silicon Solar Cells by High-Pressure Glow Discharge , 2003 .

[2]  Diego Fischer,et al.  Microcrystalline/micromorph silicon thin-film solar cells prepared by VHF-GD technique , 2001 .

[3]  High‐efficiency µc‐Si solar cells made by very high‐frequency plasma‐enhanced chemical vapor deposition , 2006 .

[4]  J. Krč,et al.  The effects of enhanced light trapping in tandem micromorph silicon solar cells , 2006 .

[5]  B. Rech,et al.  Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept , 2007 .

[6]  Igor Lvovich Skryabin,et al.  Minimisation of the cost of generated electricity from dye-sensitised solar cells using numerical analysis , 2005 .

[7]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[8]  Seung Yeop Myong,et al.  Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells , 2005 .

[9]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[10]  M. Konagai,et al.  Development of a rapidly stabilized protocrystalline silicon multilayer solar cell , 2006 .

[11]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[12]  Seung Yeop Myong,et al.  Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p -layer structure , 2004 .

[13]  Subhendu Guha,et al.  Light-induced metastability in hydrogenated nanocrystalline silicon solar cells , 2004 .

[14]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[15]  Joshua M. Pearce,et al.  Erratum: “Double amorphous silicon-carbide p-layer structures producing highly stabilized pin-type protocrystalline silicon multilayer solar cells” [Appl. Phys. Lett. 87, 193509 (2005)] , 2005 .

[16]  Richard A Kerr,et al.  Scientists Tell Policymakers We're All Warming the World , 2007, Science.

[17]  J. Springer,et al.  New materials and deposition techniques for highly efficient silicon thin film solar cells , 2002 .

[18]  A. Matsuda,et al.  Key Issue for the Fabrication of High-Efficiency Microcrystalline Silicon Thin-Film Solar Cells at Low Temperatures , 2002 .

[19]  Kenji Yamamoto,et al.  Thin film Si solar cell fabricated at low temperature , 2000 .

[20]  Seung Yeop Myong,et al.  Natural hydrogen treatment effect during formation of double amorphous silicon-carbide p layer structures producing high-efficiency pin-type amorphous silicon solar cells , 2005 .

[21]  Joshua M. Pearce,et al.  Light Induced Defect Creation Kinetics in Thin Film Protocrystalline Silicon Materials and Their Solar Cells , 2002 .

[22]  M. Konagai,et al.  Inclusion of nanosized silicon grains in hydrogenated protocrystalline silicon multilayers and its relation to stability , 2006 .

[23]  Nicolas Wyrsch,et al.  Material and solar cell research in microcrystalline silicon , 2003 .

[24]  Don L. Williamson,et al.  Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells , 2004 .