Linear Time Parameterized Algorithms for Subset Feedback Vertex Set

In the Subset Feedback Vertex Set (Subset FVS) problem, the input is a graph G on n vertices and m edges, a subset of vertices T, referred to as terminals, and an integer k. The objective is to determine whether there exists a set of at most k vertices intersecting every cycle that contains a terminal. The study of parameterized algorithms for this generalization of the Feedback Vertex Set problem has received significant attention over the past few years. In fact, the parameterized complexity of this problem was open until 2011, when two groups independently showed that the problem is fixed parameter tractable. Using tools from graph minors,, Kawarabayashi and Kobayashi obtained an algorithm for Subset FVS running in time O(f(k)ċ n2 m) [SODA 2012, JCTB 2012]. Independently, Cygan et al. [ICALP 2011, SIDMA 2013] designed an algorithm for Subset FVS running in time 2O(k log k)ċ nO(1). More recently, Wahlström obtained the first single exponential time algorithm for Subset FVS, running in time 4kċ nO(1) [SODA 2014]. While the 2O(k) dependence on the parameter k is optimal under the Exponential Time Hypothesis, the dependence of this algorithm as well as those preceding it, on the input size is at least quadratic. In this article, we design the first linear time parameterized algorithms for Subset FVS. More precisely, we obtain the following new algorithms for Subset FVS. — A randomized algorithm for Subset FVS running in time O(25.6kċ (n + m)). — A deterministic algorithm for Subset FVS running in time 2O(k log k) ċ (n + m). Since it is known that assuming the Exponential Time Hypothesis, Subset FVS cannot have an algorithm running in time 2o(k)nO(1), our first algorithm obtains the best possible asymptotic dependence on both the parameter as well as the input size. Both of our algorithms are based on “cut centrality,” in the sense that solution vertices are likely to show up in minimum size cuts between vertices sampled from carefully chosen distributions.

[1]  Mohammad Taghi Hajiaghayi,et al.  Directed Subset Feedback Vertex Set Is Fixed-Parameter Tractable , 2010, TALG.

[2]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[3]  Joseph Naor,et al.  An 8-approximation algorithm for the subset feedback vertex set problem , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[4]  Paul Wollan,et al.  Disjoint cycles intersecting a set of vertices , 2012, J. Comb. Theory, Ser. B.

[5]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[6]  Ken-ichi Kawarabayashi,et al.  Planarity Allowing Few Error Vertices in Linear Time , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[7]  Rolf Niedermeier,et al.  INTRODUCTION TO FIXED-PARAMETER ALGORITHMS , 2006 .

[8]  Bruce A. Reed,et al.  A Simple Algorithm for the Graph Minor Decomposition - Logic meets Structural Graph Theory , 2013, SODA.

[9]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[10]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[11]  Eli Upfal,et al.  Probability and Computing: Randomized Algorithms and Probabilistic Analysis , 2005 .

[12]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[13]  Bruce A. Reed,et al.  A nearly linear time algorithm for the half integral parity disjoint paths packing problem , 2009, SODA.

[14]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[15]  Ken-ichi Kawarabayashi,et al.  Erdös-Pósa property and its algorithmic applications: parity constraints, subset feedback set, and subset packing , 2012, SODA.

[16]  Bruce A. Reed,et al.  An (almost) linear time algorithm for odd cycles transversal , 2010, SODA '10.

[17]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[18]  Joseph Naor,et al.  Approximating Minimum Subset Feedback Sets in Undirected Graphs with Applications , 2000, SIAM J. Discret. Math..

[19]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[22]  Ken-ichi Kawarabayashi,et al.  Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem , 2012, J. Comb. Theory, Ser. B.

[23]  Marcin Pilipczuk,et al.  Faster deterministic Feedback Vertex Set , 2013, Inf. Process. Lett..

[24]  Dániel Marx,et al.  Fixed-parameter tractability of multicut parameterized by the size of the cutset , 2010, STOC '11.

[25]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[26]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[27]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[28]  Petra Mutzel,et al.  A Linear Time Implementation of SPQR-Trees , 2000, GD.

[29]  Michal Pilipczuk,et al.  An O(c^k n) 5-Approximation Algorithm for Treewidth , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[30]  Saket Saurabh,et al.  Linear Time Parameterized Algorithms via Skew-Symmetric Multicuts , 2014, SODA.

[31]  M. S. Ramanujan,et al.  Parameterized Tractability of Multiway Cut with Parity Constraints , 2012, ICALP.

[32]  Frederic Dorn,et al.  Planar Subgraph Isomorphism Revisited , 2009, STACS.

[33]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[34]  Bruce A. Reed,et al.  A Simpler Linear Time Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Saket Saurabh,et al.  Linear Time Parameterized Algorithms for Subset Feedback Vertex Set , 2015, ICALP.

[36]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.

[37]  Bruce A. Reed,et al.  The disjoint paths problem in quadratic time , 2012, J. Comb. Theory, Ser. B.

[38]  Saket Saurabh,et al.  Linear-Time Parameterized Algorithms via Skew-Symmetric Multicuts , 2013, SODA.

[39]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[40]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[41]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, STOC.

[42]  Ken-ichi Kawarabayashi,et al.  Graph and map isomorphism and all polyhedral embeddings in linear time , 2008, STOC.

[43]  Saket Saurabh,et al.  A Near-Optimal Planarization Algorithm , 2014, SODA.

[44]  Yoichi Iwata,et al.  Linear-Time FPT Algorithms via Network Flow , 2013, SODA.

[45]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[46]  Ken-ichi Kawarabayashi,et al.  Packing cycles through prescribed vertices , 2011, J. Comb. Theory, Ser. B.

[47]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..