Augmented boiling heat transfer on a copper nanoporous surface and the stability of nano-porosity in a hydrothermal environment

[1]  Ali Koşar,et al.  Pool boiling and flow boiling on micro- and nanostructured surfaces , 2015 .

[2]  Sushil H. Bhavnani,et al.  Boiling Augmentation with Micro/Nanostructured Surfaces: Current Status and Research Outlook , 2014 .

[3]  P. Cheng,et al.  An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures , 2014 .

[4]  S. Maroo,et al.  Critical height of micro/nano structures for pool boiling heat transfer enhancement , 2013 .

[5]  Yong Tang,et al.  Pool-boiling enhancement by novel metallic nanoporous surface , 2013 .

[6]  K. Kim,et al.  Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling , 2012 .

[7]  Yong Tang,et al.  Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer , 2012 .

[8]  K. Kim,et al.  Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer , 2012 .

[9]  T. Kunugi,et al.  Consideration of Heat Transfer Enhancement Mechanism of Nano- and Micro-Scale Porous Layer via Flow Visualization , 2011 .

[10]  B. Stutz,et al.  Influence of nanoparticle surface coating on pool boiling , 2011 .

[11]  S. Kandlikar,et al.  Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions , 2011 .

[12]  Bai-yun Huang,et al.  Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities. , 2011, Physical chemistry chemical physics : PCCP.

[13]  K. Kim,et al.  Pool boiling heat transfer with nano-porous surface , 2010 .

[14]  P. Marty,et al.  Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism , 2009 .

[15]  M. Toprak,et al.  Nature‐Inspired Boiling Enhancement by Novel Nanostructured Macroporous Surfaces , 2008 .

[16]  Ming Jia,et al.  Calculation of the surface free energy of fcc copper nanoparticles , 2008 .

[17]  Young H. Park,et al.  Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles , 2007 .

[18]  Jia Fa Nanoporous Gold Film Electrode:Preparation by Alloying/Dealloying Approach and Electrochemical Performance , 2007 .

[19]  J. Buongiorno,et al.  Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids , 2006 .

[20]  K. Kim,et al.  Pool boiling of saturated FC-72 on nano-porous surface , 2005 .

[21]  W. Rohsenow,et al.  Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface , 2004 .

[22]  A. Maisels,et al.  Higher surface energy of free nanoparticles. , 2003, Physical review letters.

[23]  S. Corcoran,et al.  Dealloying of Ag-Au Alloys in Halide-Containing Electrolytes Affect on Critical Potential and Pore Size , 2003 .

[24]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[25]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[26]  Didem Öner,et al.  Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability , 2000 .

[27]  V. Dhir BOILING HEAT TRANSFER , 1998 .

[28]  A. Arvia,et al.  SEQUENTIAL IN SITU STM IMAGING OF ELECTRODISSOLVING COPPER SINGLE-CRYSTAL DOMAINS IN AQUEOUS PERCHLORIC ACID : KINETICS AND MECHANISM OF THE INTERFACE EVOLUTION , 1997 .

[29]  E. Seebauer,et al.  Estimating surface diffusion coefficients , 1995 .

[30]  V. Dhir,et al.  Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Ve , 1993 .

[31]  J. González-Velasco,et al.  Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution , 1993 .

[32]  A. Arvia,et al.  Effect of the solution composition and the applied potential on the kinetics of roughness relaxation at gold electrodes in slightly acid electrolytes , 1993 .

[33]  Li,et al.  Ductile-brittle transition in random porous Au. , 1992, Physical review letters.

[34]  Stephen J. Kline,et al.  The Purposes of Uncertainty Analysis , 1985 .

[35]  R. Webb The Evolution of Enhanced Surface Geometries for Nucleate Boiling , 1981 .

[36]  W. Jesser,et al.  Thermodynamic theory of size dependence of melting temperature in metals , 1977, Nature.

[37]  H. Bonzel A surface diffusion mechanism at high temperature , 1970 .

[38]  I. Chaudhri,et al.  Ageing studies in nucleate pool boiling of isopropyl acetate and perchloroethylene , 1969 .

[39]  B. Mikic,et al.  A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics , 1969 .

[40]  H. J. Ivey Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling , 1967 .

[41]  W. Fritz,et al.  Versuche über den verdampfungsvorgang , 1931 .