Velocity Field Modelling for Pollutant Plume Using 3-D Adaptive Finite Element Method

Air pollution models usually start from the computation of the velocity field of a fluid. In this paper, we present a model for computing that field based on the contribution of the observed wind flow and the vertical buoyancy or momentum plume rise defined by a Gaussian plume model. This initial velocity field is adjusted to verify incompressibility and impermeability conditions by using a mass consistent model. In this environmental modelling that occur in a three-dimensional domain defined over complex terrain, a mesh generator capable of adapting itself to the topographical data and to the numerical solution is essential. Here, the unstructured tetrahedral meshes are generated by combining the use of a refinement/derefinement algorithm for two-dimensional domains and a tetrahedral mesh generator based on Delaunay triangulation. Occasionally in this process, low quality or even inverted elements may appear. A simultaneous untangling and smoothing procedure allows to optimise the resulting meshes. Once we have constructed the adapted mesh in accordance with the geometrical characteristics of our domain, we use an adaptive local refinement in the plume trajectory. Finally, this model is applied in a test problem.

[1]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[2]  Rafael Montenegro,et al.  Efficient Strategies for Adaptive 3-D Mesh Generation Over Complex Orography , 2002, Neural Parallel Sci. Comput..

[3]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[4]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[5]  Rafael Montenegro,et al.  Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model , 2005, Adv. Eng. Softw..

[6]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[7]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[8]  Rafael Montenegro,et al.  Quality Improvement of Surface Triangulations , 2005, IMR.

[9]  Rafael Montenegro,et al.  Local refinement of 3-D triangulations using object-oriented methods , 2004 .

[10]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[11]  Rafael Montenegro,et al.  Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.

[12]  Jack Dongarra,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[13]  M. Rivara A grid generator based on 4‐triangles conforming mesh‐refinement algorithms , 1987 .

[14]  Rafael Montenegro,et al.  Tetrahedral Mesh Generation for Environmental Problems over Complex Terrains , 2002, International Conference on Computational Science.

[15]  Rafael Montenegro,et al.  Several aspects of three-dimensional Delaunay triangulation , 1996 .

[16]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[17]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[18]  A. Stern Fundamentals of air pollution , 1973 .

[19]  Rainald Löhner,et al.  Adaptive H-refinement on 3-D unstructured grids for transient problems , 1989 .

[20]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[21]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[22]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[23]  Rafael Montenegro,et al.  A 3-D diagnostic model for wind field adjustment , 1998 .

[24]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[25]  Rafael Montenegro,et al.  An object oriented method for tetrahedral mesh refinement , 2002 .

[26]  L. Freitag,et al.  Local optimization-based simplicial mesh untangling and improvement. , 2000 .

[27]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[28]  Graham F. Carey,et al.  A perspective on adaptive modeling and meshing (AM&M) , 2006 .

[29]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[30]  Ángel Plaza,et al.  Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .

[31]  C. Kennes,et al.  Fundamentals of Air Pollution , 2001 .

[32]  Michael S. Floater,et al.  Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..

[33]  J. M. Escobar,et al.  An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .

[34]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[35]  J. M. González-Yuste,et al.  Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .

[36]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[37]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .