Velocity Field Modelling for Pollutant Plume Using 3-D Adaptive Finite Element Method
暂无分享,去创建一个
Rafael Montenegro | José María Escobar | Gustavo Montero | Eduardo Rodríguez | José María González-Yuste | J. M. González-Yuste | J. M. Escobar | E. Rodríguez | R. Montenegro | G. Montero
[1] Graham F. Carey,et al. Computational grids : generation, adaptation, and solution strategies , 1997 .
[2] Rafael Montenegro,et al. Efficient Strategies for Adaptive 3-D Mesh Generation Over Complex Orography , 2002, Neural Parallel Sci. Comput..
[3] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[4] Joseph M. Maubach,et al. Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .
[5] Rafael Montenegro,et al. Genetic algorithms for an improved parameter estimation with local refinement of tetrahedral meshes in a wind model , 2005, Adv. Eng. Softw..
[6] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[7] Patrick M. Knupp,et al. Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..
[8] Rafael Montenegro,et al. Quality Improvement of Surface Triangulations , 2005, IMR.
[9] Rafael Montenegro,et al. Local refinement of 3-D triangulations using object-oriented methods , 2004 .
[10] Kai Hormann,et al. Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[11] Rafael Montenegro,et al. Implementation in ALBERTA of an Automatic Tetrahedral Mesh Generator , 2006, IMR.
[12] Jack Dongarra,et al. Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.
[13] M. Rivara. A grid generator based on 4‐triangles conforming mesh‐refinement algorithms , 1987 .
[14] Rafael Montenegro,et al. Tetrahedral Mesh Generation for Environmental Problems over Complex Terrains , 2002, International Conference on Computational Science.
[15] Rafael Montenegro,et al. Several aspects of three-dimensional Delaunay triangulation , 1996 .
[16] M. Rivara,et al. A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .
[17] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[18] A. Stern. Fundamentals of air pollution , 1973 .
[19] Rainald Löhner,et al. Adaptive H-refinement on 3-D unstructured grids for transient problems , 1989 .
[20] Bharat K. Soni,et al. Handbook of Grid Generation , 1998 .
[21] Paul-Louis George,et al. Delaunay triangulation and meshing : application to finite elements , 1998 .
[22] P. George,et al. Automatic mesh generator with specified boundary , 1991 .
[23] Rafael Montenegro,et al. A 3-D diagnostic model for wind field adjustment , 1998 .
[24] Michael S. Floater,et al. One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..
[25] Rafael Montenegro,et al. An object oriented method for tetrahedral mesh refinement , 2002 .
[26] L. Freitag,et al. Local optimization-based simplicial mesh untangling and improvement. , 2000 .
[27] Igor Kossaczký. A recursive approach to local mesh refinement in two and three dimensions , 1994 .
[28] Graham F. Carey,et al. A perspective on adaptive modeling and meshing (AM&M) , 2006 .
[29] L. Freitag,et al. Tetrahedral mesh improvement via optimization of the element condition number , 2002 .
[30] Ángel Plaza,et al. Efficient refinement/derefinement algorithm of nested meshes to solve evolution problems , 1994 .
[31] C. Kennes,et al. Fundamentals of Air Pollution , 2001 .
[32] Michael S. Floater,et al. Convex combination maps over triangulations, tilings, and tetrahedral meshes , 2006, Adv. Comput. Math..
[33] J. M. Escobar,et al. An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .
[34] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[35] J. M. González-Yuste,et al. Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .
[36] Paolo Cignoni,et al. PolyCube-Maps , 2004, SIGGRAPH 2004.
[37] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .