Microgeometry capture using an elastomeric sensor

We describe a system for capturing microscopic surface geometry. The system extends the retrographic sensor [Johnson and Adelson 2009] to the microscopic domain, demonstrating spatial resolution as small as 2 microns. In contrast to existing microgeometry capture techniques, the system is not affected by the optical characteristics of the surface being measured---it captures the same geometry whether the object is matte, glossy, or transparent. In addition, the hardware design allows for a variety of form factors, including a hand-held device that can be used to capture high-resolution surface geometry in the field. We achieve these results with a combination of improved sensor materials, illumination design, and reconstruction algorithm, as compared to the original sensor of Johnson and Adelson [2009].

[1]  Robert J. Woodham,et al.  Photometric method for determining surface orientation from multiple images , 1980 .

[2]  Lee E. Weiss,et al.  Specular surface inspection using structured highlight and Gaussian images , 1990, IEEE Trans. Robotics Autom..

[3]  Rui J. P. de Figueiredo,et al.  A Theory of Photometric Stereo for a Class of Diffuse Non-Lambertian Surfaces , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Shree K. Nayar,et al.  Shape from Focus , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Andrew S. Glassner,et al.  Proceedings of the 27th annual conference on Computer graphics and interactive techniques , 1994, SIGGRAPH 1994.

[6]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[7]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[8]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[9]  Maria Petrou,et al.  The 4-Source Photometric Stereo Technique for Three-Dimensional Surfaces in the Presence of Highlights and Shadows , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[12]  Kristin J. Dana,et al.  Hybrid textons: modeling surfaces with reflectance and geometry , 2004, CVPR 2004.

[13]  Andrew W. Fitzgibbon,et al.  BRDF and geometry capture from extended inhomogeneous samples using flash photography , 2005, Comput. Graph. Forum.

[14]  Steven M. Seitz,et al.  Shape and Spatially-Varying BRDFs from Photometric Stereo , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Ira Kemelmacher-Shlizerman,et al.  Photometric Stereo with General, Unknown Lighting , 2006, International Journal of Computer Vision.

[16]  Hans-Peter Seidel,et al.  Mesostructure from Specularity , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  Kristin J. Dana,et al.  Relief texture from specularities , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Björn Stenger,et al.  Non-rigid Photometric Stereo with Colored Lights , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[19]  Philippe Bekaert,et al.  High quality mesostructure acquisition using specularities , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Eitan Grinspun,et al.  Multiscale texture synthesis , 2008, SIGGRAPH 2008.

[21]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[22]  P. Debevec,et al.  Creating a Photoreal Digital Actor: The Digital Emily Project , 2009, 2009 Conference for Visual Media Production.

[23]  Reinhard Klein,et al.  Heightfield and spatially varying BRDF Reconstruction for Materials with Interreflections , 2009, Comput. Graph. Forum.

[24]  E. Adelson,et al.  Retrographic sensing for the measurement of surface texture and shape , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.