Radiation fluxes of gravitational, electromagnetic, and scalar perturbations in type-D black holes: an exact approach

We present a novel method that solves Teukolsky equations with the source to calculate radiation fluxes at infinity and event horizon for any perturbation fields of type-D black holes. For the first time, we use the confluent Heun function to obtain the exact solutions of ingoing and outgoing waves for the Teukolsky equation. This benefits from our derivation of the asymptotic analytic expression of the confluent Heun function at infinity. It is interesting to note that these exact solutions are not subject to any constraints, such as low-frequency and weak-field. To illustrate the correctness, we apply these exact solutions to calculate the gravitational, electromagnetic, and scalar radiations of the Schwarzschild black hole. Numerical results show that the proposed exact solution appreciably improves the computational accuracy and efficiency compared with the 23rd post-Newtonian order expansion and the Mano-Suzuki-Takasugi method.

[1]  Jiliang Jing,et al.  Self-consistent effective-one-body theory for spinning binaries based on post-Minkowskian approximation , 2023, Science China Physics, Mechanics & Astronomy.

[2]  T. Hertog,et al.  Universal Teukolsky equations and black hole perturbations in higher-derivative gravity , 2023, Physical Review D.

[3]  S. Hughes,et al.  Asymptotic gravitational-wave fluxes from a spinning test body on generic orbits around a Kerr black hole , 2023, Physical Review D.

[4]  Jiliang Jing,et al.  New self-consistent effective one-body theory for spinless binaries based on the post-Minkowskian approximation , 2022, Science China Physics, Mechanics & Astronomy.

[5]  Yanbei Chen,et al.  Perturbations of Spinning Black Holes beyond General Relativity: Modified Teukolsky Equation , 2022, Physical Review X.

[6]  H. Motohashi,et al.  Spectroscopy of KerrAdS5 spacetim , 2022, Physical Review D.

[7]  S. Hughes,et al.  Precisely computing bound orbits of spinning bodies around black holes. II. Generic orbits , 2022, Physical Review D.

[8]  S. Hughes,et al.  Precisely computing bound orbits of spinning bodies around black holes. I. General framework and results for nearly equatorial orbits , 2022, Physical Review D.

[9]  G. Lukes-Gerakopoulos,et al.  Adiabatic equatorial inspirals of a spinning body into a Kerr black hole , 2022, Physical Review D.

[10]  Arpan Bhattacharyya,et al.  Prospects for determining the nature of the secondaries of extreme mass-ratio inspirals using the spin-induced quadrupole deformation , 2021, Physical Review D.

[11]  B. Wardell,et al.  Self-force calculations with a spinning secondary , 2021, Physical Review D.

[12]  H. Nakano,et al.  Adiabatic Waveforms from Extreme-Mass-Ratio Inspirals: An Analytical Approach. , 2021, Physical review letters.

[13]  P. K. Panda,et al.  Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3 , 2021, Physical Review X.

[14]  Bin Wang,et al.  Concepts and status of Chinese space gravitational wave detection projects , 2021, Nature Astronomy.

[15]  M. Salgado,et al.  Regular scalar charged clouds around a Reissner-Nordstrom black hole and no-hair theorems , 2021, Physical Review D.

[16]  Bin Chen,et al.  Correspondence of eikonal quasinormal modes and unstable fundamental photon orbits for a Kerr-Newman black hole , 2021, Physical Review D.

[17]  P. Pani,et al.  Assessing the detectability of the secondary spin in extreme mass-ratio inspirals with fully relativistic numerical waveforms , 2021, Physical Review D.

[18]  Tieguang Zi,et al.  Science with the TianQin Observatory: Preliminary results on testing the no-hair theorem with extreme mass ratio inspirals , 2021, Physical Review D.

[19]  G. Lukes-Gerakopoulos,et al.  Spinning test body orbiting around a Kerr black hole: Eccentric equatorial orbits and their asymptotic gravitational-wave fluxes , 2021, Physical Review D.

[20]  A. J. Chua,et al.  Adiabatic waveforms for extreme mass-ratio inspirals via multivoice decomposition in time and frequency , 2021, Physical Review D.

[21]  B. Wardell,et al.  Black hole perturbation theory and gravitational self-force , 2021, 2101.04592.

[22]  Faculty of Mathematics,et al.  Gravitational wave templates from Extreme Mass Ratio Inspirals , 2021, 2101.04533.

[23]  M. Shibata,et al.  Extreme mass ratio inspirals on the equatorial plane in the adiabatic order , 2020, 2008.13554.

[24]  S. Dolan,et al.  Electromagnetic self-force on a charged particle on Kerr spacetime: Equatorial circular orbits , 2020, Physical Review D.

[25]  M. Hendry,et al.  The TianQin project: Current progress on science and technology , 2020, Progress of Theoretical and Experimental Physics.

[26]  Yasuyuki Hatsuda Quasinormal modes of Kerr–de Sitter black holes via the Heun function , 2020, Classical and Quantum Gravity.

[27]  Yi-ming Hu,et al.  Science with the TianQin observatory: Preliminary result on extreme-mass-ratio inspirals , 2020, 2005.08212.

[28]  M. Hortaçsu The radial Teukolsky equation for Kerr–Newman–de Sitter geometry: revisited , 2020, 2004.09132.

[29]  P. Pani,et al.  Extreme mass ratio inspirals with spinning secondary: A detailed study of equatorial circular motion , 2020, Physical Review D.

[30]  H. S. Vieira Scalar fields in a five-dimensional Lovelock black hole spacetime , 2020, 2001.08690.

[31]  Xiaohua Zhang,et al.  A new high-order compact finite difference scheme based on precise integration method for the numerical simulation of parabolic equations , 2020 .

[32]  S. Akcay,et al.  Dissipation in extreme mass-ratio binaries with a spinning secondary , 2019, Physical Review D.

[33]  Y. Sucu,et al.  Quasinormal modes of Dirac field in 2 + 1 dimensional gravitational wave background , 2019, Physics Letters B.

[34]  H. S. Vieira,et al.  Resonant frequencies of a massless scalar field in the canonical acoustic black hole spacetime , 2019, General Relativity and Gravitation.

[35]  Zhang Liu,et al.  A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers' system , 2019, Appl. Math. Comput..

[36]  Pablo A. Cano,et al.  Leading higher-derivative corrections to Kerr geometry , 2019, Journal of High Energy Physics.

[37]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[38]  Yuan-zhong Zhang,et al.  Taiji program: Gravitational-wave sources , 2018, International Journal of Modern Physics A.

[39]  P. A. Seoane The gravitational capture of compact objects by massive black holes , 2018 .

[40]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[41]  O. Motygin On evaluation of the confluent Heun functions , 2018, 2018 Days on Diffraction (DD).

[42]  S. Bernuzzi,et al.  Spinning test body orbiting around a Kerr black hole: Circular dynamics and gravitational-wave fluxes , 2017, 1707.07537.

[43]  J. Gair,et al.  Science with the space-based interferometer LISA. V: Extreme mass-ratio inspirals , 2017, 1703.09722.

[44]  S. Bernuzzi,et al.  Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes , 2016, 1609.00356.

[45]  Canisius Bernard Stationary charged scalar clouds around black holes in string theory , 2016, 1608.05974.

[46]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[47]  B. A. Boom,et al.  Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.

[48]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[49]  S. Bernuzzi,et al.  Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole , 2015, 1510.05548.

[50]  A. Ottewill,et al.  High-order tail in Schwarzschild spacetime , 2015, 1509.04702.

[51]  H. M. Siahaan Instability of charged massive scalar fields in bound states around Kerr–Sen black holes , 2015, 1506.03957.

[52]  S. Hod The large-mass limit of cloudy black holes , 2015, 1607.00003.

[53]  O. Motygin On numerical evaluation of the Heun functions , 2015, 2015 Days on Diffraction (DD).

[54]  N. Sago,et al.  Calculation of radiation reaction effect on orbital parameters in Kerr spacetime , 2015, 1505.01600.

[55]  H. S. Vieira,et al.  Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux , 2015, 1501.00462.

[56]  R. Fujita Gravitational waves from a particle in circular orbits around a rotating black hole to the 11th post-Newtonian order , 2014, 1412.5689.

[57]  G. B. Cook,et al.  Gravitational perturbations of the Kerr geometry: High-accuracy study , 2014, 1410.7698.

[58]  A. Zimmerman,et al.  Quasinormal modes of weakly charged Kerr-Newman spacetimes , 2014, 1409.5800.

[59]  S. Hod Kerr-Newman black holes with stationary charged scalar clouds , 2014, 1406.1179.

[60]  Xin-zhou Li,et al.  Black holes and gravitational waves in three-dimensional f(R) gravity , 2014, 1405.7530.

[61]  H. S. Vieira,et al.  Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation , 2014, 1401.5397.

[62]  André A. Costa,et al.  The Klein–Gordon equation in the spacetime of a charged and rotating black hole , 2013, 1312.4823.

[63]  A. Ottewill,et al.  Self-force and Green function in Schwarzschild spacetime via quasinormal modes and branch cut , 2013, 1306.0884.

[64]  R. Fujita Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order , 2012, 1211.5535.

[65]  L. El-Jaick,et al.  Confluent Heun equations: convergence of solutions in series of coulomb wavefunctions , 2012, 1209.4673.

[66]  P. Amaro-Seoane Relativistic dynamics and extreme mass ratio inspirals , 2012, Living reviews in relativity.

[67]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[68]  D. Staicova,et al.  Application of the confluent Heun functions for finding the quasinormal modes of nonrotating black holes , 2011, 1109.1532.

[69]  W. Han Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit , 2010, 1008.3324.

[70]  B. Iyer,et al.  Spherical harmonic modes of 5.5 post-Newtonian gravitational wave polarizations and associated factorized resummed waveforms for a particle in circular orbit around a Schwarzschild black hole , 2010, 1005.2266.

[71]  N. Warburton,et al.  Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits , 2010, 1003.1860.

[72]  D. Staicova,et al.  The spectrum of electromagnetic jets from Kerr black holes and naked singularities in the Teukolsky perturbation theory , 2010, 1002.0480.

[73]  P. Fiziev Classes of exact solutions to the Teukolsky master equation , 2009, 0908.4234.

[74]  Wei Song,et al.  Holographic derivation of Kerr-Newman scattering amplitudes for general charge and spin , 2009, 0908.3909.

[75]  Roumen Borissov,et al.  Exact Solutions of Teukolsky Master Equation with Continuous Spectrum , 2009, 0903.3617.

[76]  D. Staicova,et al.  A new model of the Central Engine of GRB and the Cosmic Jets , 2009, 0902.2408.

[77]  D. Staicova,et al.  Toward a New Model of the Central Engine of GRB , 2009, 0902.2411.

[78]  P. Fiziev Classes of Exact Solutions to Regge-Wheeler and Teukolsky Equations , 2009, 0902.1277.

[79]  Jichun Li,et al.  Computational Partial Differential Equations Using MATLAB , 2008 .

[80]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[81]  P. Fiziev Exact solutions of Regge-Wheeler equation , 2007, gr-qc/0702014.

[82]  P. Fiziev Exact solutions of Regge–Wheeler equation and quasi-normal modes of compact objects , 2005, gr-qc/0509123.

[83]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[84]  E. Berti,et al.  Quasinormal modes of Kerr-Newman black holes: Coupling of electromagnetic and gravitational perturbations , 2005, gr-qc/0502065.

[85]  H. Nakano,et al.  A New Analytical Method for Self-Force Regularization. II — Testing the Efficiency for Circular Orbits — , 2004, gr-qc/0410115.

[86]  H. Tagoshi,et al.  New Numerical Methods to Evaluate Homogeneous Solutions of the Teukolsky Equation. II — Solutions of the Continued Fraction Equation — , 2004, gr-qc/0410018.

[87]  P. Kanti,et al.  Hawking radiation from a (4+n)-dimensional black hole: exact results for the Schwarzschild phase , 2003, hep-ph/0309054.

[88]  H. Nakano,et al.  A New Analytical Method for Self-Force Regularization. I — Charged Scalar Particles in Schwarzschild Spacetime — , 2003, gr-qc/0308068.

[89]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[90]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[91]  B. Figueiredo On some solutions to generalized spheroidal wave equations and applications , 2002 .

[92]  D. Kennefick,et al.  Zoom and whirl: Eccentric equatorial orbits around spinning black holes and their evolution under gravitational radiation reaction , 2002, gr-qc/0203086.

[93]  S. Wu,et al.  Massive complex scalar field in the Kerr–Sen geometry: Exact solution of wave equation and Hawking radiation , 2001, gr-qc/0303075.

[94]  S. I. Slavi︠a︡nov,et al.  Special Functions: A Unified Theory Based on Singularities , 2000 .

[95]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[96]  H. Umetsu,et al.  Analytic Solutions of the Teukolsky Equation in Kerr-de Sitter and Kerr-Newman-de Sitter Geometries , 1999, gr-qc/9905040.

[97]  H. Umetsu,et al.  PERTURBATIONS OF KERR-DE SITTER BLACK HOLES AND HEUN'S EQUATIONS , 1998, gr-qc/9805064.

[98]  Takahiro Tanaka,et al.  Chapter 1. Black Hole Perturbation , 1997, gr-qc/9712057.

[99]  H.Tagoshi,et al.  Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild black hole -5.5 Post-Newtonian Formula- , 1997, gr-qc/9701050.

[100]  S. Mano,et al.  Analytic Solutions of the Regge-Wheeler Equation and the Post-Minkowskian Expansion , 1996, gr-qc/9605057.

[101]  Sasaki,et al.  Post-Newtonian expansion of gravitational waves from a particle in circular orbit around a rotating black hole: Up to O(v8) beyond the quadrupole formula. , 1996, Physical review. D, Particles and fields.

[102]  S. Mano,et al.  Analytic Solutions of the Teukolsky Equation and Their Low Frequency Expansions , 1996, gr-qc/9603020.

[103]  Takahiro Tanaka,et al.  Gravitational Waves From a Particle Orbiting around a Rotating Black Hole: Post‐Newtonian Expansion , 1995 .

[104]  Poisson,et al.  Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion. , 1995, Physical review. D, Particles and fields.

[105]  Sasaki,et al.  Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections. , 1994, Physical review. D, Particles and fields.

[106]  Sasaki,et al.  Gravitational waves from a particle orbiting around a rotating black hole: Post-Newtonian expansion. , 1994, Physical review. D, Particles and fields.

[107]  D. Kennefick,et al.  Gravitational radiation reaction for bound motion around a Schwarzschild black hole. , 1994, Physical review. D, Particles and fields.

[108]  H. Tagoshi,et al.  Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole , 1994, gr-qc/9405062.

[109]  M. Sasaki Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function , 1994, gr-qc/9402042.

[110]  M. Novello,et al.  Solutions to a spheroidal wave equation , 1993 .

[111]  Sen,et al.  Rotating charged black hole solution in heterotic string theory. , 1992, Physical review letters.

[112]  Leaver,et al.  Spectral decomposition of the perturbation response of the Schwarzschild geometry. , 1986, Physical review. D, Particles and fields.

[113]  E. W. Leaver Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two‐center problem in molecular quantum mechanics , 1986 .

[114]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[115]  U. Khanal Rotating black hole in asymptotic de Sitter space: Perturbation of the space-time with spin fields , 1983 .

[116]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[117]  Takashi Nakamura,et al.  Gravitational Radiation from a Kerr Black Hole. I. Formulation and a Method for Numerical Analysis , 1982 .

[118]  Takashi Nakamura,et al.  A class of new perturbation equations for the Kerr geometry , 1982 .

[119]  H. Ezawa,et al.  Gravitational Radiation of a Particle Falling towards a Black Hole. I ---The Case of Non-Rotating Black Hole--- , 1981 .

[120]  A. L. Dudley,et al.  Covariant Perturbed Wave Equations in Arbitrary Type $D$ Backgrounds , 1979 .

[121]  S. Detweiler Black Holes and Gravitational Waves. I. Circular Orbits About a Rotating Hole , 1978 .

[122]  A. L. Dudley,et al.  Separation of Wave Equations for Perturbations of General Type-DSpace-Times , 1977 .

[123]  S. Chandrasekhar On the equations governing the perturbations of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[124]  P. Chrzanowski Vector potential and metric perturbations of a rotating black hole , 1975 .

[125]  W. Press,et al.  Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. , 1974 .

[126]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[127]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[128]  W. Press,et al.  Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric , 1973 .

[129]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[130]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[131]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[132]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[133]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[134]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[135]  M. Tulder Chapter 1 , 2006, European Spine Journal.

[136]  A. Loinger On black holes and gravitational waves , 2002 .

[137]  A. Ronveaux,et al.  Heun's differential equations , 1995 .

[138]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[139]  W. Press,et al.  Radiation fields in the Schwarzschild background , 1973 .

[140]  J. Wainwright Geometric Properties of Neutrino Fields in Curved Space‐Time , 1971 .

[141]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[142]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .

[143]  H. Bateman,et al.  Higher Transcendental Functions [Volumes I-III] , 1953 .