Structures and functions of autotransporter proteins in microbial pathogens.

[1]  Harald Kolmar,et al.  Decorating microbes: surface display of proteins on Escherichia coli. , 2011, Trends in biotechnology.

[2]  T. Endo,et al.  BamE structure: the assembly of β‐barrel proteins in the outer membranes of bacteria and mitochondria , 2011, EMBO reports.

[3]  M. Viant,et al.  Structure and function of BamE within the outer membrane and the β‐barrel assembly machine , 2011, EMBO reports.

[4]  S. Olgen,et al.  Autodisplay of catalytically active human hyaluronidase hPH-20 and testing of enzyme inhibitors. , 2011, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[5]  Matthias Schneider,et al.  Autodisplay of 60-kDa Ro/SS-A antigen and development of a surface display enzyme-linked immunosorbent assay for systemic lupus erythematosus patient sera screening. , 2010, Analytical biochemistry.

[6]  I. Henderson,et al.  C‐terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA , 2010, Molecular microbiology.

[7]  B. Clantin,et al.  Functional importance of a conserved sequence motif in FhaC, a prototypic member of the TpsB/Omp85 superfamily , 2010, The FEBS journal.

[8]  P. Genevaux,et al.  YidC Is Involved in the Biogenesis of the Secreted Autotransporter Hemoglobin Protease* , 2010, The Journal of Biological Chemistry.

[9]  J. Tame,et al.  A Conserved Aromatic Residue in the Autochaperone Domain of the Autotransporter Hbp Is Critical for Initiation of Outer Membrane Translocation* , 2010, The Journal of Biological Chemistry.

[10]  I. Henderson,et al.  The unusual extended signal peptide region is not required for secretion and function of an Escherichia coli autotransporter. , 2010, FEMS microbiology letters.

[11]  W. Jong,et al.  Extracellular production of recombinant proteins using bacterial autotransporters. , 2010, Current opinion in biotechnology.

[12]  F. Kawai,et al.  A novel intein-like autoproteolytic mechanism in autotransporter proteins. , 2010, Journal of molecular biology.

[13]  P. Tian,et al.  Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment , 2010, Proceedings of the National Academy of Sciences.

[14]  P. Tian,et al.  Molecular basis for the structural stability of an enclosed β-barrel loop. , 2010, Journal of molecular biology.

[15]  Emily S. Charlson,et al.  Dissection of β‐barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli , 2010, Molecular microbiology.

[16]  T. Wells,et al.  Autotransporters of Escherichia coli: a sequence-based characterization. , 2010, Microbiology.

[17]  C. Stathopoulos,et al.  Importance of Conserved Residues of the Serine Protease Autotransporter β-Domain in Passenger Domain Processing and β-Barrel Assembly , 2010, Infection and Immunity.

[18]  J. Tame,et al.  Autotransporter passenger proteins: virulence factors with common structural themes , 2010, Journal of Molecular Medicine.

[19]  B. Berg,et al.  Crystal structure of a full-length autotransporter. , 2010, Journal of molecular biology.

[20]  A. Smit,et al.  The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. , 2009, Microbiology.

[21]  H. Bernstein,et al.  Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane , 2009, Proceedings of the National Academy of Sciences.

[22]  I. Henderson,et al.  Roles of Periplasmic Chaperone Proteins in the Biogenesis of Serine Protease Autotransporters of Enterobacteriaceae , 2009, Journal of bacteriology.

[23]  H. Niki,et al.  A Genome-Scale Proteomic Screen Identifies a Role for DnaK in Chaperoning of Polar Autotransporters in Shigella , 2009, Journal of bacteriology.

[24]  U. Dobrindt,et al.  Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43. , 2009, International journal of medical microbiology : IJMM.

[25]  B. Clantin,et al.  First structural insights into the TpsB/Omp85 superfamily , 2009, Biological chemistry.

[26]  J. S. St. Geme,et al.  A prototype two-partner secretion pathway: the Haemophilus influenzae HMW1 and HMW2 adhesin systems. , 2009, Trends in microbiology.

[27]  R. Rappuoli,et al.  HadA is an atypical new multifunctional trimeric coiled‐coil adhesin of Haemophilus influenzae biogroup aegyptius, which promotes entry into host cells , 2009, Cellular microbiology.

[28]  T. Johnson,et al.  Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of haemophilus influenzae immunoglobulin A1 protease. , 2009, Journal of molecular biology.

[29]  Crystallographic characterization of the passenger domain of the Bordetella autotransporter BrkA. , 2009, Acta crystallographica. Section F, Structural biology and crystallization communications.

[30]  Julie Janvore,et al.  Autoprocessing of the Escherichia coli AIDA-I Autotransporter , 2009, The Journal of Biological Chemistry.

[31]  I. Henderson,et al.  Membrane protein architects: the role of the BAM complex in outer membrane protein assembly , 2009, Nature Reviews Microbiology.

[32]  J. Tommassen,et al.  Signals in bacterial β-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria , 2009, Proceedings of the National Academy of Sciences.

[33]  Hui Wu,et al.  Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. , 2009, Microbiology.

[34]  P. Clark,et al.  Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion , 2009, Molecular microbiology.

[35]  G. Schneider,et al.  Domain Organization of Long Autotransporter Signal Sequences , 2009, Bioinformatics and biology insights.

[36]  Jason E. Heindl,et al.  Contribution of the Periplasmic Chaperone Skp to Efficient Presentation of the Autotransporter IcsA on the Surface of Shigella flexneri , 2008, Journal of bacteriology.

[37]  G. Waksman,et al.  Repetitive Architecture of the Haemophilus influenzae Hia Trimeric Autotransporter , 2008, Journal of molecular biology.

[38]  J. Gross,et al.  The Haemophilus influenzae HMW1 Adhesin Is a Glycoprotein with an Unusual N-Linked Carbohydrate Modification* , 2008, Journal of Biological Chemistry.

[39]  I. Henderson,et al.  Common themes and variations in serine protease autotransporters. , 2008, Trends in microbiology.

[40]  D. Otzen,et al.  Effect of glycosylation on the extracellular domain of the Ag43 bacterial autotransporter: enhanced stability and reduced cellular aggregation. , 2008, The Biochemical journal.

[41]  P. Clark,et al.  A conserved stable core structure in the passenger domain beta-helix of autotransporter virulence proteins. , 2008, Biopolymers.

[42]  W. Jong,et al.  The conserved extension of the Hbp autotransporter signal peptide does not determine targeting pathway specificity. , 2008, Biochemical and biophysical research communications.

[43]  Ashok Mulchandani,et al.  Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. , 2008, Biotechnology and bioengineering.

[44]  M. Schmidt,et al.  Development of a tripartite vector system for live oral immunization using a gram-negative probiotic carrier. , 2008, International journal of medical microbiology : IJMM.

[45]  H. Bernstein,et al.  Incorporation of a polypeptide segment into the β‐domain pore during the assembly of a bacterial autotransporter , 2007, Molecular microbiology.

[46]  Thomas F. Meyer,et al.  The Autodisplay Story, from Discovery to Biotechnical and Biomedical Applications , 2007, Microbiology and Molecular Biology Reviews.

[47]  S. Buchanan,et al.  Autotransporter structure reveals intra-barrel cleavage followed by conformational changes , 2007, Nature Structural &Molecular Biology.

[48]  P. Cotter,et al.  New insight into the molecular mechanisms of two-partner secretion. , 2007, Trends in microbiology.

[49]  F. Lépine,et al.  O-Linked Glycosylation Ensures the Normal Conformation of the Autotransporter Adhesin Involved in Diffuse Adherence , 2007, Journal of bacteriology.

[50]  M. S. McClain,et al.  Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain , 2007, Proceedings of the National Academy of Sciences.

[51]  H. Bernstein,et al.  Protein secretion in gram-negative bacteria via the autotransporter pathway. , 2007, Annual review of microbiology.

[52]  G. Ulett,et al.  Autotransporter proteins: novel targets at the bacterial cell surface. , 2007, FEMS microbiology letters.

[53]  B. Clantin,et al.  Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily , 2007, Science.

[54]  J. Tommassen Getting Into and Through the Outer Membrane , 2007, Science.

[55]  Piotr Sliz,et al.  Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine , 2007, Science.

[56]  M. Chami,et al.  YaeT‐independent multimerization and outer membrane association of secretin PulD , 2007, Molecular microbiology.

[57]  S. Payne,et al.  IcsA Surface Presentation in Shigella flexneri Requires the Periplasmic Chaperones DegP, Skp, and SurA , 2007, Journal of bacteriology.

[58]  M. Goldberg,et al.  Requirement for YaeT in the Outer Membrane Assembly of Autotransporter Proteins , 2007, Journal of bacteriology.

[59]  D. E. Anderson,et al.  Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism , 2007, The EMBO journal.

[60]  J. Tame,et al.  Limited tolerance towards folded elements during secretion of the autotransporter Hbp , 2007, Molecular microbiology.

[61]  C. Stathopoulos,et al.  Identification of autotransporter proteins secreted by type V secretion systems in gram-negative bacteria. , 2007, Methods in molecular biology.

[62]  I. Henderson,et al.  A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. , 2007, Microbiology.

[63]  M. Skurnik My life with Yersinia. , 2007, Advances in experimental medicine and biology.

[64]  Tracy Palmer,et al.  Secretion by numbers: protein traffic in prokaryotes , 2006, Molecular microbiology.

[65]  Andrey V Kajava,et al.  The turn of the screw: variations of the abundant beta-solenoid motif in passenger domains of Type V secretory proteins. , 2006, Journal of structural biology.

[66]  J. Tommassen,et al.  A novel phase-variable autotransporter serine protease, AusI, of Neisseria meningitidis. , 2006, Microbes and infection.

[67]  J. Tommassen,et al.  Polar Localization of the Autotransporter Family of Large Bacterial Virulence Proteins , 2006, Journal of bacteriology.

[68]  M. Mourez,et al.  Surface display of proteins by Gram-negative bacterial autotransporters , 2006, Microbial cell factories.

[69]  Gabriel Waksman,et al.  Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter , 2006, The EMBO journal.

[70]  A. Lupas,et al.  Trimeric autotransporter adhesins: variable structure, common function. , 2006, Trends in microbiology.

[71]  Characterization of MspA, an Immunogenic Autotransporter Protein That Mediates Adhesion to Epithelial and Endothelial Cells in Neisseria meningitidis , 2006, Infection and Immunity.

[72]  H. Bernstein,et al.  An Unusual Signal Peptide Extension Inhibits the Binding of Bacterial Presecretory Proteins to the Signal Recognition Particle, Trigger Factor, and the SecYEG Complex* , 2006, Journal of Biological Chemistry.

[73]  A. V. McDonnell,et al.  Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Tommassen,et al.  Protein secretion and secreted proteins in pathogenic Neisseriaceae. , 2006, FEMS microbiology reviews.

[75]  U. Dobrindt,et al.  Glycosylation of the Self-Recognizing Escherichia coli Ag43 Autotransporter Protein , 2006, Journal of bacteriology.

[76]  J. Heesemann,et al.  Yersinia's stratagem: targeting innate and adaptive immune defense. , 2006, Current opinion in microbiology.

[77]  Joachim Jose,et al.  Autodisplay: efficient bacterial surface display of recombinant proteins , 2006, Applied Microbiology and Biotechnology.

[78]  R. Ghirlando,et al.  Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter , 2005, Molecular microbiology.

[79]  J. S. St. Geme,et al.  Trimeric autotransporters: a distinct subfamily of autotransporter proteins. , 2005, Trends in microbiology.

[80]  J. Tame,et al.  Crystal Structure of Hemoglobin Protease, a Heme Binding Autotransporter Protein from Pathogenic Escherichia coli* , 2005, Journal of Biological Chemistry.

[81]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.

[82]  F. Gunzer,et al.  Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. , 2005, FEMS immunology and medical microbiology.

[83]  H. Bernstein,et al.  An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Huilin Li,et al.  Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria (Review) , 2005, Molecular membrane biology.

[85]  I. Henderson,et al.  Type V Protein Secretion Pathway: the Autotransporter Story , 2004, Microbiology and Molecular Biology Reviews.

[86]  V. de Lorenzo,et al.  Structural tolerance of bacterial autotransporters for folded passenger protein domains , 2004, Molecular microbiology.

[87]  B. Clantin,et al.  The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two-partner secretion pathway. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. S. St. Geme,et al.  The Haemophilus influenzae Hia Autotransporter Contains an Unusually Short Trimeric Translocator Domain* , 2004, Journal of Biological Chemistry.

[89]  Piet Gros,et al.  Structure of the translocator domain of a bacterial autotransporter , 2004, The EMBO journal.

[90]  G. Waksman,et al.  Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter , 2004, The EMBO journal.

[91]  I. Henderson,et al.  The autotransporter secretion system. , 2004, Research in microbiology.

[92]  Mikael Skurnik,et al.  The Yersinia adhesin YadA collagen‐binding domain structure is a novel left‐handed parallel β‐roll , 2004, The EMBO journal.

[93]  C. Beinke,et al.  Modular organization of the AIDA autotransporter translocator: The N-terminal β1-domain is surface-exposed and stabilizes the transmembrane β2-domain , 2001, Antonie van Leeuwenhoek.

[94]  M. Schmidt,et al.  Sweet new world: glycoproteins in bacterial pathogens. , 2003, Trends in microbiology.

[95]  J. Tommassen,et al.  A Neisserial autotransporter NalP modulating the processing of other autotransporters , 2003, Molecular microbiology.

[96]  J. Beckwith,et al.  IcsA, a polarly localized autotransporter with an atypical signal peptide, uses the Sec apparatus for secretion, although the Sec apparatus is circumferentially distributed , 2003, Molecular microbiology.

[97]  M. Apicella,et al.  The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis , 2003, Molecular microbiology.

[98]  M. Urbanus,et al.  Signal Recognition Particle (SRP)-mediated Targeting and Sec-dependent Translocation of an Extracellular Escherichia coli Protein* , 2003, The Journal of Biological Chemistry.

[99]  M. Schmidt,et al.  Never say never again: protein glycosylation in pathogenic bacteria , 2002, Molecular microbiology.

[100]  V. de Lorenzo,et al.  Export of autotransported proteins proceeds through an oligomeric ring shaped by C‐terminal domains , 2002, The EMBO journal.

[101]  M. Schmidt,et al.  Functional Substitution of the TibC Protein of Enterotoxigenic Escherichia coli Strains for the Autotransporter Adhesin Heptosyltransferase of the AIDA System , 2002, Infection and Immunity.

[102]  M. Schmidt,et al.  Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA‐I adhesin , 2001, Molecular microbiology.

[103]  A. Kajava,et al.  Review: proteins with repeated sequence--structural prediction and modeling. , 2001, Journal of structural biology.

[104]  M. Goldberg,et al.  Periplasmic Transit and Disulfide Bond Formation of the Autotransported Shigella Protein IcsA , 2001, Journal of bacteriology.

[105]  B. Finlay,et al.  Renaming protein secretion in the gram-negative bacteria. , 2000, Trends in microbiology.

[106]  I. Autenrieth,et al.  Cell surface presentation of recombinant (poly-) peptides including functional T-cell epitopes by the AIDA autotransporter system. , 2000, FEMS immunology and medical microbiology.

[107]  E. A. Elsinghorst,et al.  Identification of a Glycoprotein Produced by Enterotoxigenic Escherichia coli , 1999, Infection and Immunity.

[108]  T. Meyer,et al.  Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli , 1997, Journal of bacteriology.

[109]  M. Schmidt,et al.  Processing of the AIDA‐I precursor: removal of AIDAC and evidence for the outer membrane anchoring as a β‐barrel structure , 1996, Molecular microbiology.

[110]  P. Emsley,et al.  Structure of Bordetella pertussis virulence factor P.69 pertactin , 1996, Nature.

[111]  S. Horinouchi,et al.  Characterization of secretory intermediates of Serratia marcescens serine protease produced during its extracellular secretion from Escherichia coli cells. , 1993, Journal of biochemistry.

[112]  Philip J. Reeves,et al.  Membrance traffic wardens and protein secretion in Gram-negative bacteria , 1993 .

[113]  V. Braun,et al.  In vitro activation of the Serratia marcescens hemolysin through modification and complementation , 1992, Journal of bacteriology.

[114]  M. Schmidt,et al.  AIDA‐I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule , 1992, Molecular microbiology.

[115]  T. Meyer,et al.  Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease , 1987, Nature.

[116]  T. Meyer,et al.  IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. , 1984, The EMBO journal.

[117]  S. Falkow,et al.  Genetic and biochemical analysis of gonococcal IgA1 protease: cloning in Escherichia coli and construction of mutants of gonococci that fail to produce the activity. , 1982, Proceedings of the National Academy of Sciences of the United States of America.