Image Classification Using a Mixture of Subspace Models

This paper introduces a novel method for image classification using local feature descriptors. The method utilizes linear subspaces of local descriptors for characterizing their distribution and extracting image features. The extracted features are transformed into more discriminative features by the linear discriminant analysis and employed for recognizing their categories. Experimental results demonstrate that this method is competitive with the Fisher kernel method in terms of classification accuracy.

[1]  Jitendra Malik,et al.  Discriminative Decorrelation for Clustering and Classification , 2012, ECCV.

[2]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[3]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[4]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[5]  Ken-ichi Maeda,et al.  Face recognition using temporal image sequence , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[6]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[10]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[14]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[16]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[18]  Naoki Mukawa,et al.  Kernel mutual subspace method for robust facial image recognition , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[19]  Yasuo Kuniyoshi,et al.  Graphical Gaussian Vector for Image Categorization , 2012, NIPS.

[20]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[21]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[22]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[23]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[24]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[25]  Takumi Kobayashi,et al.  BFO Meets HOG: Feature Extraction Based on Histograms of Oriented p.d.f. Gradients for Image Classification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.