Multiobjective robustness for portfolio optimization in volatile environments

Multiobjective methods are ideal for evolving a set of portfolio optimisation solutions that span a range from high-return/high-risk to low-return/low-risk, and an investor can choose her preferred point on the risk-return frontier. However, there are no guarantees that a low-risk solution will remain low-risk . if the environment changes, the relative positions of previously identified solutions may alter. A low-risk solution may become high-risk and vice versa. The robustness of a Multiobjective Genetic Programming (MOGP) algorithm such as SPEA2 is vitally important in the context of the real-world problem of portfolio optimisation. We explore robustness in this context, providing new definitions and a statistical measure to quantify the robustness of solutions. A new robustness measure is incorporated into a MOGP fitness function to bias evolution towards more robust solutions. This new system ("R-SPEA2") is compared against the original SPEA2 and we present our results.

[1]  L. Jain,et al.  Evolutionary multiobjective optimization : theoretical advances and applications , 2005 .

[2]  Aravind Seshadri,et al.  A FAST ELITIST MULTIOBJECTIVE GENETIC ALGORITHM: NSGA-II , 2000 .

[3]  Carlos Henggeler Antunes,et al.  Robustness Analysis in Multi-Objective Optimization Using a Degree of Robustness Concept , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  Applications of multi-objective evolutionary algorithms in economics and finance: A survey , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[6]  William Mendenhall,et al.  Book Collection 2003 : Introduction to probability and statistics / , 2003 .

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  William Mendenhall,et al.  Introduction to probability and statistics (7th ed.) , 1986 .

[9]  Amitabha Mukerjee,et al.  Multi–objective Evolutionary Algorithms for the Risk–return Trade–off in Bank Loan Management , 2002 .

[10]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[11]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[12]  Shapour Azarm,et al.  A multi-objective genetic algorithm for robust design optimization , 2005, GECCO '05.

[13]  Kalyanmoy Deb,et al.  Handling constraints in robust multi-objective optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  José Antonio Lozano,et al.  A multiobjective approach to the portfolio optimization problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[16]  Carlos A. Coello Coello,et al.  Recent Trends in Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[17]  Keshav P. Dahal,et al.  Portfolio optimization using multi-obj ective genetic algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[18]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[19]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[20]  Eckart Zitzler,et al.  Evolutionary multi-objective optimization , 2007, Eur. J. Oper. Res..

[21]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[22]  Rolf Drechsler,et al.  Multi-objective Optimisation Based on Relation Favour , 2001, EMO.

[23]  Jin Li,et al.  Enhancing Financial Decision Making Using Multi-Objective Financial Genetic Programming , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[25]  Laura Diosan,et al.  A multi-objective evolutionary approach to the portfolio optimization problem , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[26]  Rolf Drechsler,et al.  Robust Multi-Objective Optimization in High Dimensional Spaces , 2007, EMO.

[27]  Kalyanmoy Deb,et al.  Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization , 2005, EMO.

[28]  Kalyanmoy Deb,et al.  Reliability-Based Multi-objective Optimization Using Evolutionary Algorithms , 2007, EMO.