Modelling and simulation of a polluted water pumping process

The objective of this article is to discuss the modelling and simulation of the motion of oil spots in the open sea, and the effect on the pollutant concentration when a polluted water pumping ship follows a pre-assigned trajectory to remove the pollutant. We assume here that the oil spots motion is due to the coupling of diffusion, the transport from the wind, sea currents and pumping process and the reaction due to the extraction of oil, implying that the mathematical model will be of advection-reaction-diffusion type. Our discussion includes the description of a parallelization of the selected numerical procedure. We present some results of numerical experiments showing that indeed the parallelization makes the model evaluation more efficient.

[1]  Xing-Ping Liu,et al.  An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing , 2009 .

[2]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[3]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[4]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[5]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[6]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  J.G. Lewis,et al.  Matrix-vector multiplication and conjugate gradient algorithms on distributed memory computers , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[9]  J. Brandts [Review of: W. Hundsdorfer, J.G. Verwer (2003) Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations] , 2006 .

[10]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[11]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[12]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.

[13]  Qiang Ye,et al.  A convergence analysis for nonsymmetric Lanczos algorithms , 1991 .

[14]  P. CalvoM.,et al.  Linearly implicit RungeKutta methods for advectionreactiondiffusion equations , 2001 .

[15]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[16]  J. G. Lewis,et al.  Distributed memory matrix-vector multiplication and conjugate gradient algorithms , 1993, Supercomputing '93.

[17]  Gene H. Golub,et al.  Scientific computing: an introduction with parallel computing , 1993 .

[18]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[19]  Willem Hundsdorfer,et al.  RKC time-stepping for advection-diffusion-reaction problems , 2004 .