Intramedullary nailing biomechanics: Evolution and challenges

This article aims to review the biomechanical evolution of intramedullary nailing and describe the breakthrough concepts which allowed for nail improvement and its current success. The understanding of this field establishes an adequate background for forthcoming research and allows to infer on the path for future developments on intramedullary nailing. It was not until the 1940s, with the revolutionary Küntscher intramedullary nailing design, that this method was recognized as a widespread medical procedure. Such achievement was established based on the foundations created from intuition-based experiments and the first biomechanical ideologies. The nail evolved from allowing alignment and stability through press-fit fixation with nail-cortical wall friction to the nowadays nail stability achieved through interlocking screws mechanical linkage between nail and bone. Important landmarks during nail evolution comprise the introduction of flexible reaming, the progress from slotted to non-slotted nails design, the introduction of nail ‘dynamization’ and the use of titanium alloys as a new nail material. Current biomechanical improvement efforts aim to enhance the bone–intramedullary nail system stability. We suggested that benefit would be attained from a better understanding of the ideal mechano-biological environment at the fracture site, and future improvements will emerge from combining mechanics and biological tools.

[1]  C. Rangger,et al.  Carbon-Fibre-Reinforced PEEK radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. , 2017, Injury.

[2]  Ernest W. Hey Groves,et al.  On the application of the principle of extension to comminuted fractures of the Long bone, with special reference to gunshot injuries , 1914 .

[3]  D. Ferguson,et al.  (ii) An update on fracture healing and non-union , 2010 .

[4]  Francis W. Cooke,et al.  A Primer of Biomechanics , 1998, Springer New York.

[5]  Thomas A Russell,et al.  Intramedullary Nailing: Evolutions of Femoral Intramedullary Nailing: First to Fourth Generations , 2011, Journal of orthopaedic trauma.

[6]  J. Bartoníček,et al.  [History of intramedullary nailing]. , 2001, Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca.

[7]  Stephan M. Perren,et al.  300 Years of Intramedullary Fixation – from Aztec Practice to Standard Treatment Modality , 2000, European Journal of Trauma.

[8]  I. Schipper,et al.  Circulating bone morphogenetic protein levels and delayed fracture healing , 2013, International Orthopaedics.

[9]  G B KUNTSCHER,et al.  The Kuntscher method of intramedullary fixation. , 1958, The Journal of bone and joint surgery. American volume.

[10]  Hannah L Dailey,et al.  The Flexible Axial Stimulation (FAST) intramedullary nail provides interfragmentary micromotion and enhanced torsional stability. , 2013, Clinical biomechanics.

[11]  Jorge Letechipia,et al.  Design and preliminary testing of an active intramedullary nail. , 2014, Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion.

[12]  M T MODNY,et al.  THE PERFORATED CRUCIATE INTRAMEDULLARY NAIL: PRELIMINARY REPORT OF ITS USE IN GERIATRIC PATIENTS , 1953, Journal of the American Geriatrics Society.

[13]  D. Dennis,et al.  The Biomechanics of Varied Proximal Locking Screw Configurations in a Synthetic Model of Proximal Third Tibial Fracture Fixation , 2011, Journal of orthopaedic trauma.

[14]  D H COLLINS,et al.  Structural changes around nails and screws in human bones. , 1953, The Journal of pathology and bacteriology.

[15]  Hendra Hermawan,et al.  Metals for Biomedical Applications , 2011 .

[16]  K Schwieger,et al.  Angle stable interlocking screws improve construct stability of intramedullary nailing of distal tibia fractures: a biomechanical study. , 2009, Injury.

[17]  C. Court-Brown,et al.  An atlas of closed nailing of the tibia and femur , 1991 .

[18]  J. K. Spelt,et al.  Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. , 2004, Medical engineering & physics.

[19]  Ruth W. Krinsky A Manual of Orthopaedic Terminology , 1991 .

[20]  N Weinrich,et al.  Telemetric assessment of bone healing with an instrumented internal fixator: a preliminary study. , 2012, The Journal of bone and joint surgery. British volume.

[21]  Jim Donovan,et al.  A modified intramedullary nail interlocking design yields improved stability for fatigue cycling in a canine femur fracture model , 2012, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  O HUDSON,et al.  Intertrochanteric fractures. , 1957, Clinical orthopaedics.

[23]  J P Warbasse Gluck on Osteoplasty. , 1896, Annals of surgery.

[24]  C. Klein,et al.  Unreamed or RIA reamed nailing: an experimental sheep study using comparative histological assessment of affected bone tissue in an acute fracture model. , 2010, Injury.

[25]  P. Atkinson,et al.  A method to modify angle-stable intramedullary nail construct compliance. , 2014, The Iowa orthopaedic journal.

[26]  Vanna Bottai,et al.  Current medical treatment strategies concerning fracture healing. , 2013, Clinical cases in mineral and bone metabolism : the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases.

[27]  Zehai Wu,et al.  Finite element analysis of mechanical properties of wooden club shaped and general screws with interlocking intramedullary nail , 2014, 2014 IEEE International Conference on Mechatronics and Automation.

[28]  Ronald F. Zernicke,et al.  Biomechanics of musculoskeletal injury , 1998 .

[29]  Prof. Dr. Maurice E. Müller,et al.  Manual of INTERNAL FIXATION , 1991, Springer Berlin Heidelberg.

[30]  Andrew L Freeman,et al.  Biomechanical Comparison of Tibial Nail Stability in a Proximal Third Fracture: Do Screw Quantity and Locked, Interlocking Screws Make a Difference? , 2011, Journal of orthopaedic trauma.

[31]  Yi Liu,et al.  Surgical Treatment of Tibial and Femoral Fractures with TiNi Shape-Memory Alloy Interlocking Intramedullary Nails , 2002 .

[32]  Daryl R. Wall Techniques and Principles for the Operating Room , 2011 .

[33]  B. Browner,et al.  Current status of locked intramedullary nailing: a review. , 1987, Journal of orthopaedic trauma.

[34]  Jan Chłopek,et al.  Influence of the intramedullary nail preparation method on nail's mechanical properties and degradation rate. , 2015, Materials science & engineering. C, Materials for biological applications.

[35]  W S Savory On the Absorption of Dead Bone. , 1864, Medico-chirurgical transactions.

[36]  Ian Greaves,et al.  Oxford Desk Reference - Major Trauma , 2010 .

[37]  V. Garg,et al.  Removal of a broken distal cannulated intramedullary femoral nail with solid reamer with closed methods and without using C-arm: A case report , 2015 .

[38]  Hilmi Volkan Demir,et al.  Implantable microelectromechanical sensors for diagnostic monitoring and post‐surgical prediction of bone fracture healing , 2015, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[39]  Gerhard Schmidmaier,et al.  The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study , 2011, Archives of Orthopaedic and Trauma Surgery.

[40]  H. Stedtfeld,et al.  Rationale of Intramedullary Nailing , 2015 .

[41]  J. Heiney,et al.  Distal femoral fixation: a biomechanical comparison of retrograde nail, retrograde intramedullary nail, and prototype locking retrograde nail. , 2012, Clinical biomechanics.

[42]  Sven Young,et al.  Orthopaedic trauma surgery in low-income countries , 2014, Acta orthopaedica. Supplementum.

[43]  Gerhard Küntscher,et al.  Die Marknagelung von Knochenbrüchen , 1940, Klinische Wochenschrift.

[44]  WALTER G. STUCK,et al.  THREE YEARS' EXPERIENCE WITH VITALLIUM IN BONE SURGERY , 1941, Annals of surgery.

[45]  W. Stotz,et al.  Unsere Erfahrungen mit der Marknagelung nach Küntscher , 1943, Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik.

[46]  Volker Wesling,et al.  Transcutaneous electromagnetic induction heating of an intramedullary nickel–titanium shape memory implant , 2014, International Orthopaedics.

[47]  Gerhard B. G. Künstscher The Kuntscher method of intramedullary fixation. , 1958 .

[48]  M. Allgöwer,et al.  Manual of INTERNAL FIXATION , 1992, Springer Berlin Heidelberg.

[49]  P. M. Rommens,et al.  The role of intramedullary nailing in treatment of open fractures , 2015, European Journal of Trauma and Emergency Surgery.

[50]  R J Eveleigh,et al.  A review of biomechanical studies of intramedullary nails. , 1995, Medical engineering & physics.

[51]  Vilmos Vécsei,et al.  Intramedullary nailing in fracture treatment: history, science and Küntscher's revolutionary influence in Vienna, Austria. , 2011, Injury.

[52]  K. Dai,et al.  Rational Utilization of the Stress Shielding Effect of Implants , 2004 .

[53]  R King Küntscher nailing of the tibia--a new tibial jig. , 1980, Injury.

[54]  J. G. Bonnin,et al.  MEDULLARY NAILING OF FRACTURES AFTER FIFTY YEARS , 1950 .

[55]  Lutz Claes,et al.  Fracture healing under healthy and inflammatory conditions , 2012, Nature Reviews Rheumatology.

[56]  T. Decoster,et al.  A Brief History of Medullary Nailing, New Mexico Perspective , 2012 .

[57]  Browner Bd,et al.  Current status of locked intramedullary nailing: a review. , 1987 .

[58]  Zouheir Fawaz,et al.  Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. , 2014, Clinical biomechanics.

[59]  M. Markmiller,et al.  The unreamed tibia nail , 2000, Langenbeck's Archives of Surgery.

[60]  A. Speitling,et al.  Intramedullary Nail Systems , 2002 .

[61]  Chi-Chuan Wu,et al.  Biomechanical analysis of the mechanism of interlocking nail failure , 2004, Archives of Orthopaedic and Trauma Surgery.

[62]  J. L. Alves,et al.  Diaphyseal femoral fracture: 3D biomodel and intramedullary nail created by additive manufacturing , 2016 .

[63]  Ricardo Gómez-García,et al.  An intramedullary nail coated with antibiotic and growth factor nanoparticles: An individualized state-of-the-art treatment for chronic osteomyelitis with bone defects. , 2017, Medical hypotheses.

[64]  Dominic Gehweiler,et al.  Complications of intramedullary nailing-Evolution of treatment. , 2017, Injury.

[65]  C. Lutton,et al.  Low cost polymer intramedullary nails for fracture fixation: a biomechanical study in a porcine femur model , 2009, Archives of Orthopaedic and Trauma Surgery.

[66]  Juan Farill,et al.  Orthopaedics In Mexico , 1952 .

[67]  Giuseppe Musumeci,et al.  Cellular reactions to biodegradable magnesium alloys on human growth plate chondrocytes and osteoblasts , 2014, International Orthopaedics.

[68]  D. Dagrenat,et al.  Biomechanics of Locked Intramedullary Fixation of Fractures , 2002 .

[69]  Elise F. Morgan,et al.  Toward Clinical Application and Molecular Understanding of the Mechanobiology of Bone Healing , 2015, Clinical Reviews in Bone and Mineral Metabolism.

[70]  A Rüter,et al.  The unreamed tibia nail. Multicenter study of the AO/ASIF. Osteosynthesefragen/Association for the Study of Internal Fixation. , 2000, Langenbeck's archives of surgery.

[71]  Tommaso Ingrassia,et al.  Design of a new tibial intramedullary nail , 2011 .

[72]  Elazer R Edelman,et al.  Biocompatibility, bone healing, and safety evaluation in rabbits with an IlluminOss bone stabilization system , 2017, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[73]  Klaus Püschel,et al.  Influence of intramedullary nail diameter and locking mode on the stability of tibial shaft fracture fixation , 2009, Archives of Orthopaedic and Trauma Surgery.

[74]  med. J. Nicolaysen Lidt om Diagnosen og Behandlingen af Fr. colli femoris. , 2009 .

[75]  Thomas Mückley,et al.  The primary stability of angle-stable versus conventional locked intramedullary nails , 2012, International Orthopaedics.

[76]  Manuel Kessler,et al.  Effect of angular stability and other locking parameters on the mechanical performance of intramedullary nails , 2015, Biomedizinische Technik. Biomedical engineering.

[77]  Subrata Saha,et al.  Torsional Testing of Bone , 1999 .

[78]  M. Raschke,et al.  Antibiotic Coated Nails , 2015 .

[79]  G M White,et al.  The treatment of fractures of the femoral shaft with the Brooker-Wills distal locking intramedullary nail. , 1986, The Journal of bone and joint surgery. American volume.

[80]  Bastian Welke,et al.  In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. , 2015, Acta biomaterialia.

[81]  Charles Bingham Penrose,et al.  ON THE ORGANIZATION AND ABSORPTION OF STERILIZED DEAD BONE DOWELS.: Read in the Section of Surgery and Anatomy, at the Fortieth Annual Meeting of the American Medical Association, June, 1889. , 1890 .

[82]  Lutz Claes,et al.  Improvement of the shear fixation stability of intramedullary nailing. , 2011, Clinical biomechanics.

[83]  Vilmos Vécsei,et al.  Küntscher – A historical vignette , 2013 .

[84]  Jan Bartoníček,et al.  Early history of operative treatment of fractures , 2010, Archives of Orthopaedic and Trauma Surgery.

[85]  E. F. Cave,et al.  INTRACAPSULAR FRACTURES OF THE NECK OF THE FEMUR: TREATMENT BY INTERNAL FIXATION , 1931 .

[86]  C. Whyne,et al.  Proximal Tibial Fracture Stability With Intramedullary Nail Fixation Using Oblique Interlocking Screws , 2003, Journal of orthopaedic trauma.

[87]  Christopher S. Lynch,et al.  Mechanics of Materials and Mechanics of Materials , 1996 .

[88]  G. Schmidmaier,et al.  Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. , 2017, Injury.

[89]  Reza Fazel-Rezai,et al.  Biomedical Engineering - From Theory to Applications , 2011 .

[90]  N Senn,et al.  I. A New Method of Direct Fixation of the Fragments in Compound and Ununited Fractures. , 2017, Annals of surgery.

[91]  Ernest W. Hey Groves,et al.  Ununited fractures, with special reference to gunshot injuries and the use of bone grafting , 1918 .

[92]  N P Haas,et al.  Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. , 2005, The Journal of bone and joint surgery. American volume.

[93]  Lutz Claes,et al.  Disadvantages of interfragmentary shear on fracture healing—mechanical insights through numerical simulation , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[94]  Georg Bergmann,et al.  Implantable Sensor Technology: From Research to Clinical Practice , 2012, The Journal of the American Academy of Orthopaedic Surgeons.

[95]  D. Ferry,et al.  Themistocles Gluck: an unrecognised genius. , 1992, BMJ.

[96]  M Brückner,et al.  In vitro biomechanical comparison of a newly designed interlocking nail system to a standard DCP , 2014, Tierärztliche Praxis K: Kleintiere/Heimtiere.

[97]  J. Hsu,et al.  Advances in Tibial Nailing , 2006 .

[98]  James G Garrick Intramedullary nailing. , 2004, Orthopedics.

[99]  Yuehuei H. An,et al.  Internal fixation in osteoporotic bone , 2002 .

[100]  J. Albareda,et al.  Biomechanical study of the Grosse-Kempf femoral nail , 1997, International Orthopaedics.

[101]  WALTER G. STUCK,et al.  THE EFFECTS ON BONE OF THE PRESENCE OF METALS; BASED UPON ELECTROLYSIS: AN EXPERIMENTAL STUDY , 1937, Annals of surgery.

[102]  B. J. MacDonald,et al.  The role of interfragmentary strain on the rate of bone healing-a new interpretation and mathematical model. , 2010, Journal of biomechanics.

[103]  Tommaso Ingrassia,et al.  Virtual prototyping of a new intramedullary nail for tibial fractures , 2013 .

[104]  Damien Lacroix,et al.  Simulation of fracture healing in the tibia: Mechanoregulation of cell activity using a lattice modeling approach , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[105]  Jukka Lekkala,et al.  Low cost miniaturization of an implantable prototype , 2009 .

[106]  Jia Pei,et al.  Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: An in vitro and in vivo study. , 2018, Acta biomaterialia.

[107]  M. Verhofstad,et al.  Functional recovery after treatment of extra-articular distal radius fractures in the elderly using the IlluminOss® System (IO-Wrist); a multicenter prospective observational study , 2016, BMC Musculoskeletal Disorders.

[108]  Jürgen Koebke,et al.  Angle stable locking nails versus conventionally locked intramedullary nails in proximal tibial shaft fractures: a biomechanical study , 2011, Archives of Orthopaedic and Trauma Surgery.

[109]  A L Yettram,et al.  Finite element analysis of intramedullary devices: The effect of the gap between the implant and the bone , 2008, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[110]  Gilbert Taglang,et al.  75 years of contemporary intramedullary nailing. , 2014, Journal of orthopaedic trauma.

[111]  B. J. Brewer,et al.  The medullary nail presentation of a new type and report of a case. , 1947, Archives of surgery.