Customized TRS invariants for 2D vector fields via moment normalization

The behavior of vector fields under translation, rotation and scaling differs with respect to the underlying application. Moment invariants that are customized to the specific problem can be constructed by means of normalization. In this paper, we calculate general TRS (translation, rotation, and scaling) moment invariants for two-dimensional vector fields. As an example, we show explicitly how to customize the result for the detection of flow field patterns.

[1]  Jan Flusser,et al.  Moment Invariants in Image Analysis , 2007 .

[2]  Gerik Scheuermann,et al.  Moment Invariants for 2D Flow Fields via Normalization in Detail , 2015, IEEE Transactions on Visualization and Computer Graphics.

[3]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[4]  Gerik Scheuermann,et al.  Moment Invariants for 2D Flow Fields Using Normalization , 2014, 2014 IEEE Pacific Visualization Symposium.

[5]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[6]  Jan Flusser,et al.  On the inverse problem of rotation moment invariants , 2002, Pattern Recognit..

[7]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[8]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  M. Teague Image analysis via the general theory of moments , 1980 .

[10]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[11]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[12]  Michael Schlemmer,et al.  Pattern Recognition for Feature Based and Comparative Visualization , 2011 .

[13]  Hudai Dirilten,et al.  Pattern Matching Under Affine Transformations , 1977, IEEE Transactions on Computers.

[14]  Wei Liu,et al.  Scale and Rotation Invariant Detection of Singular Patterns in Vector Flow Fields , 2010, SSPR/SPR.

[15]  Tristan Needham,et al.  Visual Complex Analysis , 1997 .

[16]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[17]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[18]  Gerik Scheuermann Topological vector field visualization with Clifford algebra , 1999, Ausgezeichnete Informatikdissertationen.

[19]  Bernd Hamann,et al.  Moment Invariants for the Analysis of 2D Flow Fields , 2007, IEEE Transactions on Visualization and Computer Graphics.