Physics and modeling of thermal flow and soil mechanics in unconsolidated porous media

This paper describes a new formulation of nonlinear soil mechanics and multiphase thermal flow. The nonlinearites of the soil behavior and their interactions with fluid flow causing shear failure of the soil are the dominant features of the process. The numerical formulation of the coupled flow/stress solution model includes nonlinear compressibility and flow properties as functions of pressure, stress, and temperature; nonlinear, incremental, thermal poroelastic stress analysis; and shear or tensile failure and its effects on transport properties, porosity, and stress. An efficient sequential numerical scheme was developed. It is mass conservative and applicable to external coupling of existing simulators. The 1D examples show some startling new features of reservoir mechanics in unconsolidated media.