Thermal-Based Evaporative Stress Index for Monitoring Surface Moisture Depletion

The standard suite of indicators currently used in operational drought monitoring reflects anomalous conditions in several major components of the hydrologic budget—representing deficits in precipitation, soil moisture content, runoff, surface and groundwater storage, snowpack, and streamflow. In principle, it is useful to have a diversity of indices because drought can assume many forms (meteorological , agricultural, hydrological, and socioeconomic), over broad ranges in timescale CONTENTS

[1]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[2]  J. M. Norman,et al.  Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery , 2011 .

[3]  Kenneth R. Knapp,et al.  Scientific data stewardship of international satellite cloud climatology project B1 global geostationary observations , 2008 .

[4]  Robert G. Quayle,et al.  A Historical Perspective of U.S. Climate Divisions , 1996 .

[5]  William P. Kustas,et al.  Time Difference Methods for Monitoring Regional Scale Heat Fluxes with Remote Sensing , 2013 .

[6]  Martha C. Anderson,et al.  Utility of thermal image sharpening for monitoring field‐scale evapotranspiration over rainfed and irrigated agricultural regions , 2008 .

[7]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[8]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[9]  K. McNaughton,et al.  A mixed-layer model for regional evaporation , 1986 .

[10]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[11]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  B. Séguin,et al.  Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches , 2005 .

[13]  J. Norman,et al.  A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces , 2000 .

[14]  Martha C. Anderson,et al.  Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship , 2003 .

[15]  Lifeng Luo,et al.  An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) , 2003 .

[16]  W. Alley The Palmer Drought Severity Index: Limitations and Assumptions , 1984 .

[17]  William P. Kustas,et al.  Effects of Vegetation Clumping on Two–Source Model Estimates of Surface Energy Fluxes from an Agricultural Landscape during SMACEX , 2005 .

[18]  Martha C. Anderson,et al.  Upscaling flux observations from local to continental scales using thermal remote sensing , 2007 .

[19]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[20]  C. Hain Developing a dual assimilation approach for thermal infrared and passive microwave soil moisture retrievals , 2010 .

[21]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[22]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[23]  C. Kongoli,et al.  Long-term snow depth simulations using a modified atmosphere–land exchange model , 2000 .

[24]  T. Tadesse,et al.  The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation , 2008 .

[25]  Martha C. Anderson,et al.  Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery , 2010 .

[26]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[27]  Thomas R. Karl,et al.  Some Spatial Characteristics of Drought Duration in the United States , 1983 .

[28]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology , 2007 .

[29]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[30]  Frédéric Baret,et al.  GEOLAND2 - Towards an operational GMES land monitoring core service; first results of the biogeophysical parameter core mapping service , 2010 .

[31]  T. McKee,et al.  Drought monitoring with multiple time scales , 1995 .

[32]  M. Moran,et al.  Thermal infrared measurement as an indicator of plant ecosystem health , 2003 .

[33]  D. C. Edwards,et al.  Characteristics of 20th Century Drought in the United States at Multiple Time Scales. , 1997 .

[34]  G. Senay,et al.  Remote sensing of evapotranspiration for operational drought monitoring using principles of water and energy balance: Chapter 6 , 2012 .

[35]  Leszek Łabędzki,et al.  Standardized evapotranspiration as an agricultural drought index , 2009 .

[36]  Witold F. Krajewski,et al.  New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3‐hourly estimates over Oklahoma , 2009 .

[37]  Li Zheng,et al.  Calculating regional drought indices using evapotranspiration (ET) distribution derived from Landsat7 ETM+ data , 2005, SPIE Optics + Photonics.

[38]  Mekonnen Gebremichael,et al.  Evaluation of CMORPH Precipitation Products at Fine Space–Time Scales , 2009 .

[39]  John M. Norman,et al.  Estimating Fluxes on Continental Scales Using Remotely Sensed Data in an Atmospheric–Land Exchange Model , 1999 .

[40]  Nws NOAA's Advanced Hydrologic Prediction Service , 2005 .

[41]  Martha C. Anderson,et al.  Remote sensing of drought : innovative monitoring approaches , 2012 .

[42]  Michael J. Hayes,et al.  Appropriate application of the standardized precipitation index in arid locations and dry seasons , 2007 .

[43]  Martha C. Anderson,et al.  Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations , 2010 .

[44]  F. Kogan,et al.  Global Drought Watch from Space , 1997 .

[45]  Youlong Xia,et al.  Drought Indices Based on the Climate Forecast System Reanalysis and Ensemble NLDAS , 2011 .

[46]  S. Shukla,et al.  Use of a standardized runoff index for characterizing hydrologic drought , 2008 .

[47]  J. Norman,et al.  Algorithms for extracting information from remote thermal-IR observations of the Earth's surface , 1995 .

[48]  R. Reynolds,et al.  Bulletin of the American Meteorological Society , 1996 .

[49]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[50]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .