Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior
暂无分享,去创建一个
[1] John A Deacon. FATIGUE LIFE PREDICTION , 1973 .
[2] J. R. Griffiths,et al. CASTING DEFECTS AND THE FATIGUE BEHAVIOUR OF AN ALUMINIUM CASTING ALLOY , 1990 .
[3] C. M. Sonsino,et al. Fatigue strength and applications of cast aluminium alloys with different degrees of porosity , 1993 .
[5] K. Pedersen,et al. Fatigue Properties of an A356 (AlSi7Mg) Aluminium Alloy for Automotive Applications - Fatigue Life Prediction , 1994 .
[6] W. Meiners,et al. Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe , 1999 .
[7] D. Apelian,et al. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects , 2001 .
[8] Diran Apelian,et al. Fatigue behavior of A356/357 aluminum cast alloys. Part II – Effect of microstructural constituents , 2001 .
[9] P. Kobryn,et al. Mechanical Properties of Laser-Deposited Ti-6Al-4V , 2001 .
[10] R. Poprawe,et al. Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit 'Selective Laser Melting' , 2003 .
[11] Fritz Klocke,et al. Entwicklung des Selective Laser Melting (SLM) für Aluminiumwerkstoffe , 2004 .
[12] Diran Apelian,et al. Fatigue crack growth characteristics in cast Al–Si–Mg alloys: Part I. Effect of processing conditions and microstructure , 2004 .
[13] R. Poprawe,et al. Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen , 2006 .
[14] K. Osakada,et al. Rapid Manufacturing of Metal Components by Laser Forming , 2006 .
[15] B. Stucker,et al. Layer-Based Additive Manufacturing Technologies , 2007 .
[16] F. H. Samuel,et al. Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys , 2008 .
[17] H. Ammar,et al. Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys , 2008 .
[18] Konrad Wissenbach,et al. Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM) , 2008 .
[19] Ryan B. Wicker,et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting , 2010 .
[20] Guian Qian,et al. Investigation of high cycle and Very-High-Cycle Fatigue behaviors for a structural steel with smooth and notched specimens , 2010 .
[21] B. Baufeld,et al. Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties , 2010 .
[22] J. Kruth,et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V , 2010 .
[23] Jan Bültmann,et al. High Power Selective Laser Melting (HP SLM) of Aluminum Parts , 2011 .
[24] Omer Van der Biest,et al. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition , 2011 .
[25] Wilhelm Meiners,et al. Selective Laser Melting , 2012 .