Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior

[1]  John A Deacon FATIGUE LIFE PREDICTION , 1973 .

[2]  J. R. Griffiths,et al.  CASTING DEFECTS AND THE FATIGUE BEHAVIOUR OF AN ALUMINIUM CASTING ALLOY , 1990 .

[3]  C. M. Sonsino,et al.  Fatigue strength and applications of cast aluminium alloys with different degrees of porosity , 1993 .

[4]  Metallographic Investigation of Al-Si-Mg and Al-Si-Cu Alloys/ Metallographische Untersuchung von Al-Si-Mg- und Al-Si-Cu- Legierungen , 1993 .

[5]  K. Pedersen,et al.  Fatigue Properties of an A356 (AlSi7Mg) Aluminium Alloy for Automotive Applications - Fatigue Life Prediction , 1994 .

[6]  W. Meiners,et al.  Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe , 1999 .

[7]  D. Apelian,et al.  Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects , 2001 .

[8]  Diran Apelian,et al.  Fatigue behavior of A356/357 aluminum cast alloys. Part II – Effect of microstructural constituents , 2001 .

[9]  P. Kobryn,et al.  Mechanical Properties of Laser-Deposited Ti-6Al-4V , 2001 .

[10]  R. Poprawe,et al.  Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit 'Selective Laser Melting' , 2003 .

[11]  Fritz Klocke,et al.  Entwicklung des Selective Laser Melting (SLM) für Aluminiumwerkstoffe , 2004 .

[12]  Diran Apelian,et al.  Fatigue crack growth characteristics in cast Al–Si–Mg alloys: Part I. Effect of processing conditions and microstructure , 2004 .

[13]  R. Poprawe,et al.  Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen , 2006 .

[14]  K. Osakada,et al.  Rapid Manufacturing of Metal Components by Laser Forming , 2006 .

[15]  B. Stucker,et al.  Layer-Based Additive Manufacturing Technologies , 2007 .

[16]  F. H. Samuel,et al.  Porosity and the fatigue behavior of hypoeutectic and hypereutectic aluminum–silicon casting alloys , 2008 .

[17]  H. Ammar,et al.  Effect of casting imperfections on the fatigue life of 319-F and A356-T6 Al–Si casting alloys , 2008 .

[18]  Konrad Wissenbach,et al.  Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM) , 2008 .

[19]  Ryan B. Wicker,et al.  Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting , 2010 .

[20]  Guian Qian,et al.  Investigation of high cycle and Very-High-Cycle Fatigue behaviors for a structural steel with smooth and notched specimens , 2010 .

[21]  B. Baufeld,et al.  Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: Microstructure and mechanical properties , 2010 .

[22]  J. Kruth,et al.  A study of the microstructural evolution during selective laser melting of Ti–6Al–4V , 2010 .

[23]  Jan Bültmann,et al.  High Power Selective Laser Melting (HP SLM) of Aluminum Parts , 2011 .

[24]  Omer Van der Biest,et al.  Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition , 2011 .

[25]  Wilhelm Meiners,et al.  Selective Laser Melting , 2012 .