Spectral methods for graph clustering - A survey

Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.

[1]  William N. Venables,et al.  An Introduction To R , 2004 .

[2]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[3]  Akira Ushioda,et al.  Hierarchical Clustering of Words and Application to NLP Tasks , 1996, VLC@COLING.

[4]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[5]  F. Chung Spectral Graph Theory, Regional Conference Series in Math. , 1997 .

[6]  Jianbo Shi,et al.  A Random Walks View of Spectral Segmentation , 2001, AISTATS.

[7]  Nello Cristianini,et al.  Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial Problem , 2006, J. Mach. Learn. Res..

[8]  Kun Huang,et al.  A unifying theorem for spectral embedding and clustering , 2003, AISTATS.

[9]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[10]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[12]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[13]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[16]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[17]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[18]  Werner Rheinboldt,et al.  Computer Science and Scientific Computing , 1989 .

[19]  Pierre Hansen,et al.  Cluster analysis and mathematical programming , 1997, Math. Program..

[20]  D. Lusseau,et al.  The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations , 2003, Behavioral Ecology and Sociobiology.

[21]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[22]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[23]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Seungjin Choi,et al.  Semidefinite spectral clustering , 2006, Pattern Recognit..

[25]  Xiaofeng He,et al.  A unified representation of multiprotein complex data for modeling interaction networks , 2004, Proteins.

[26]  G. W. Stewart,et al.  Computer Science and Scientific Computing , 1990 .

[27]  Christopher Bishop,et al.  Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics , 2003 .

[28]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[29]  Amos Storkey,et al.  In Proceedings of the Eighth International Workshop on Artificial Intelligence and Statistics , 2001 .

[30]  Vikas Singh,et al.  Ensemble Clustering using Semidefinite Programming , 2007, NIPS.

[31]  R. M. Cormack,et al.  A Review of Classification , 1971 .

[32]  Chris H. Q. Ding,et al.  Nonnegative Lagrangian Relaxation of K-Means and Spectral Clustering , 2005, ECML.

[33]  JAMES DEMMEL,et al.  LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.

[34]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[35]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Stuart L. Schreiber,et al.  SpectralNET – an application for spectral graph analysis and visualization , 2005, BMC Bioinformatics.

[37]  S. Vishveshwara,et al.  Identification of side-chain clusters in protein structures by a graph spectral method. , 1999, Journal of molecular biology.

[38]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[39]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[40]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[41]  E. Hückel,et al.  Quantentheoretische Beiträge zum Benzolproblem , 1931 .

[42]  Erich Hckel,et al.  Quanstentheoretische Beitrge zum Benzolproblem: II. Quantentheorie der induzierten Polaritten , 1931 .

[43]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.

[44]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[45]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[46]  C. Alpert,et al.  Multi-Way Partitioning Via Spacefilling Curves and Dynamic Programming , 1994, 31st Design Automation Conference.

[47]  C. Ding,et al.  Spectral relaxation models and structure analysis for K-way graph clustering and bi-clustering , 2001 .

[48]  Chung-Kuan Cheng,et al.  Towards efficient hierarchical designs by ratio cut partitioning , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[49]  Olga G. Troyanskaya,et al.  Nearest Neighbor Networks: clustering expression data based on gene neighborhoods , 2007, BMC Bioinformatics.

[50]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[51]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[52]  John C. Platt,et al.  Fast Low-Rank Semidefinite Programming for Embedding and Clustering , 2007, AISTATS.

[53]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[54]  Andrew B. Kahng,et al.  Spectral Partitioning with Multiple Eigenvectors , 1999, Discret. Appl. Math..

[55]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[56]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[57]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[58]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[59]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[60]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[61]  Ulrike von Luxburg,et al.  Influence of graph construction on graph-based clustering measures , 2008, NIPS.

[62]  François Fouss,et al.  The Principal Components Analysis of a Graph, and Its Relationships to Spectral Clustering , 2004, ECML.

[63]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Michael I. Jordan,et al.  Learning Spectral Clustering , 2003, NIPS.

[65]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.