Geometric Representations of Random Hypergraphs

ABSTRACT We introduce a novel parameterization of distributions on hypergraphs based on the geometry of points in . The idea is to induce distributions on hypergraphs by placing priors on point configurations via spatial processes. This specification is then used to infer conditional independence models, or Markov structure, for multivariate distributions. This approach results in a broader class of conditional independence models beyond standard graphical models. Factorizations that cannot be retrieved via a graph are possible. Inference of nondecomposable graphical models is possible without requiring decomposability, or the need of Gaussian assumptions. This approach leads to new Metropolis-Hastings Markov chain Monte Carlo algorithms with both local and global moves in graph space, generally offers greater control on the distribution of graph features than currently possible, and naturally extends to hypergraphs. We provide a comparative performance evaluation against state-of-the-art approaches, and illustrate the utility of this approach on simulated and real data.

[1]  Paul C. Kainen,et al.  Some recent results in topological graph theory , 1974 .

[2]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[3]  Peter D. Hoff Extending the rank likelihood for semiparametric copula estimation , 2006, math/0610413.

[4]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[5]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[6]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[9]  Daniel Q. Naiman,et al.  Abstract tubes, improved inclusion-exclusion identities and inequalities and importance sampling , 1997 .

[10]  Edoardo M. Airoldi,et al.  A Survey of Statistical Network Models , 2009, Found. Trends Mach. Learn..

[11]  P. Green,et al.  Decomposable graphical Gaussian model determination , 1999 .

[12]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[13]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[14]  A. Dawid,et al.  Hyper Markov Laws in the Statistical Analysis of Decomposable Graphical Models , 1993 .

[15]  D. J. Strauss A model for clustering , 1975 .

[16]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[17]  Matthew Kahle,et al.  Topology of random clique complexes , 2006, Discret. Math..

[18]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[19]  Elizabeth S. Meckes,et al.  Limit theorems for Betti numbers of random simplicial complexes , 2010 .

[20]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[21]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[22]  R. Adler,et al.  PR ] 2 4 Ju l 2 01 1 Submitted to the Annals of Applied Probability DISTANCE FUNCTIONS , CRITICAL POINTS , AND TOPOLOGY FOR SOME RANDOM COMPLEXES By , 2011 .

[23]  M. West,et al.  Simulation of hyper-inverse Wishart distributions in graphical models , 2007 .

[24]  A. Roverato Hyper Inverse Wishart Distribution for Non-decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models , 2002 .

[25]  Stephen P. Boyd,et al.  Mixing Times for Random Walks on Geometric Random Graphs , 2005, ALENEX/ANALCO.

[26]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[27]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[28]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Michael A. West,et al.  Archival Version including Appendicies : Experiments in Stochastic Computation for High-Dimensional Graphical Models , 2005 .

[30]  J. L. Bryant Approximating embeddings of polyhedra in codimension three , 1972 .

[31]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[32]  Stephen J. Wright,et al.  Light-Gap disturbances, recruitment limitation, and tree diversity in a neotropical forest , 1999, Science.

[33]  A. Atay-Kayis,et al.  A Monte Carlo method to compute the marginal likelihood in non decomposable graphical Gaussian models , 2003 .

[34]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[35]  Jianqing Fan,et al.  NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES. , 2009, The annals of applied statistics.

[36]  Julio M. Singer,et al.  Central Limit Theorems , 2011, International Encyclopedia of Statistical Science.

[37]  A. Atay-Kayis,et al.  A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models , 2005 .

[38]  R. Kohn,et al.  Efficient estimation of covariance selection models , 2003 .

[39]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[40]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[41]  János Pach,et al.  Extremal Problems for Geometric Hypergraphs , 1996, ISAAC.

[42]  J. Yukich,et al.  Central limit theorems for some graphs in computational geometry , 2001 .

[43]  James G. Scott,et al.  Feature-Inclusion Stochastic Search for Gaussian Graphical Models , 2008 .

[44]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[45]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[46]  Jirí Matousek,et al.  Hardness of embedding simplicial complexes in Rd , 2009, SODA.

[47]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[48]  R. Wolpert,et al.  Likelihood-based inference for Matérn type-III repulsive point processes , 2009, Advances in Applied Probability.

[49]  I. Molchanov Theory of Random Sets , 2005 .