Highly Efficient Coupling of Nanolight Emitters to a Ultra-Wide Tunable Nanofibre Cavity

Solid-state microcavities combining ultra-small mode volume, wide-range resonance frequency tuning, as well as lossless coupling to a single mode fibre are integral tools for nanophotonics and quantum networks. We developed an integrated system providing all of these three indispensable properties. It consists of a nanofibre Bragg cavity (NFBC) with the mode volume of under 1 μm3 and repeatable tuning capability over more than 20 nm at visible wavelengths. In order to demonstrate quantum light-matter interaction, we establish coupling of quantum dots to our tunable NFBC and achieve an emission enhancement by a factor of 2.7.

[1]  H. Yokoyama,et al.  Physics and Device Applications of Optical Microcavities , 1992, Science.

[2]  J. Knight,et al.  Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. , 1997, Optics letters.

[3]  K Vahala,et al.  Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration. , 2000, Optics letters.

[4]  A. Abbott Retraction ends furore over cancer vaccine , 2003, Nature.

[5]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[6]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[7]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[8]  K. Vahala Optical microcavities , 2003, Nature.

[9]  V. I. Balykin,et al.  Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber , 2004 .

[10]  B. C. Richards,et al.  Scanning a Photonic Crystal Slab Nanocavity by Condensation of Xenon for Cavity QED Experiments , 2005 .

[11]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[12]  Keiji Sasaki,et al.  Polarization-discriminated spectra of a fiber-microsphere system , 2006 .

[13]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[14]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[15]  Oskar Painter,et al.  Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures , 2007 .

[16]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[17]  Kendall N Houk,et al.  Accounts of Chemical Research. , 2008, Accounts of chemical research.

[18]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[19]  K. Hakuta,et al.  Cavity-enhanced channeling of emission from an atom into a nanofiber , 2009, 0910.5276.

[20]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[21]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[22]  N. Gregersen,et al.  A highly efficient single-photon source based on a quantum dot in a photonic nanowire , 2010 .

[23]  Hong-Quan Zhao,et al.  Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. , 2011, Nano letters.

[24]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[25]  K Nakajima,et al.  Cavity formation on an optical nanofiber using focused ion beam milling technique. , 2011, Optics express.

[26]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[27]  Evelyn L. Hu,et al.  Ultrafast all-optical switching by single photons , 2011, Nature Photonics.

[28]  R. Yalla,et al.  Fluorescence photon measurements from single quantum dots on an optical nanofiber. , 2011, Optics express.

[29]  Hong-Quan Zhao,et al.  A nanodiamond-tapered fiber system with high single-mode coupling efficiency. , 2012, Optics express.

[30]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[31]  F. Kien,et al.  Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. , 2012, Physical review letters.

[32]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[33]  H. Weinfurter,et al.  Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center , 2013, 1309.0421.

[34]  Shigeki Takeuchi,et al.  Recent progress in single-photon and entangled-photon generation and applications , 2014 .

[35]  Hideaki Takashima,et al.  Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices. , 2014, Optics express.

[36]  Kohzo Hakuta,et al.  Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. , 2014, Physical review letters.