A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates
暂无分享,去创建一个
[1] H Jing,et al. Spin-orbit-coupled dipolar Bose-Einstein condensates. , 2012, Physical review letters.
[2] Vortex phase diagram in rotating two-component Bose-Einstein condensates. , 2003, Physical review letters.
[3] Qiang Du,et al. Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..
[4] Leslie Greengard,et al. Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT , 2013, SIAM J. Sci. Comput..
[5] L. You,et al. Trapped condensates of atoms with dipole interactions , 2001 .
[6] Yong Zhang,et al. Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation , 2015, J. Comput. Phys..
[7] Yi Wang,et al. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity , 2010, 1011.1990.
[8] Santos,et al. Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.
[9] L. You,et al. Trapped atomic condensates with anisotropic interactions , 2000 .
[10] Christophe Besse,et al. High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations , 2016, J. Comput. Phys..
[11] Dalibard,et al. Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.
[12] Wolfgang Ketterle,et al. Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .
[13] Luis E. Young-S.,et al. Mixing, demixing, and structure formation in a binary dipolar Bose-Einstein condensate , 2012 .
[14] Yong Zhang,et al. On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions , 2015, J. Comput. Phys..
[15] K. B. Davis,et al. Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.
[16] P. Markowich,et al. NUMERICAL SIMULATION OF TRAPPED DIPOLAR QUANTUM GASES: COLLAPSE STUDIES AND VORTEX DYNAMICS , 2010 .
[17] A. Fetter. Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.
[18] Weizhu Bao,et al. Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT , 2014, J. Comput. Phys..
[19] Masahito Ueda,et al. Ferrofluidity in a two-component dipolar Bose-Einstein condensate. , 2008, Physical review letters.
[20] Yanzhi Zhang,et al. An efficient spectral method for computing dynamics of rotating two-component Bose-Einstein condensates via coordinate transformation , 2013, J. Comput. Phys..
[21] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[22] M. Baranov,et al. Theoretical progress in many-body physics with ultracold dipolar gases , 2008 .
[23] P. Capuzzi,et al. Structure of vortices in two-component Bose-Einstein condensates , 2001, cond-mat/0201563.
[24] Weizhu Bao,et al. Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.
[25] Christof Sparber,et al. On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.
[26] Geneviève Dujardin,et al. High Order Exponential Integrators for Nonlinear Schrödinger Equations with Application to Rotating Bose-Einstein Condensates , 2015, SIAM J. Numer. Anal..
[27] A. M. Martin,et al. Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.
[28] W. Bao,et al. Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.
[29] S. Simon,et al. Vortex lattices in rotating atomic bose gases with dipolar interactions. , 2005, Physical review letters.
[30] N. R. Cooper,et al. Vortex lattices in Bose-Einstein condensates with dipolar interactions beyond the weak-interaction limit , 2007 .
[31] Hanquan Wang,et al. A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates , 2007 .
[32] W. Ketterle,et al. Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.
[33] Seo Ho Youn,et al. Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.
[34] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[35] C. A. Sackett,et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [Phys. Rev. Lett. 75, 1687 (1995)] , 1997 .
[36] Weizhu Bao,et al. Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..
[37] Yanzhi Zhang,et al. Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation , 2007 .
[38] J. R. Ensher,et al. Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .
[39] Haifeng Jiang,et al. Exotic vortex lattices in a rotating binary dipolar Bose-Einstein condensate , 2016, Scientific Reports.
[40] Bradley,et al. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.
[41] S. K. Adhikari,et al. Statics and dynamics of a binary dipolar Bose–Einstein condensate soliton , 2014, 1401.3178.
[42] Masahito Ueda,et al. Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.
[43] A. Griesmaier,et al. Bose-Einstein condensation of chromium. , 2005, Physical review letters.
[44] Jian Zhang,et al. Vortex lattices in planar Bose-Einstein condensates with dipolar interactions. , 2005, Physical review letters.
[45] R. Grimm,et al. Bose-Einstein condensation of erbium. , 2012, Physical review letters.
[46] M. Oktel,et al. Vortex lattices in dipolar two-component Bose-Einstein condensates , 2014, 1402.1020.
[47] Masahito Ueda,et al. d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.
[48] M. Lewenstein,et al. The physics of dipolar bosonic quantum gases , 2009, 0905.0386.
[49] Weizhu Bao,et al. Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT , 2015, 1504.02897.
[50] Sitai Li,et al. The numerical method for computing the ground state of the two-component dipolar Bose-Einstein condensate , 2013 .
[51] Weizhu Bao,et al. Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .
[52] Hanquan Wang,et al. Numerical Simulations on Stationary States for Rotating Two-Component Bose-Einstein Condensates , 2009, J. Sci. Comput..
[53] Yu-ren Shi,et al. Vortices of a rotating two-component dipolar Bose–Einstein condensate in an optical lattice , 2016 .
[54] Yanzhi Zhang,et al. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..
[55] B. Malomed,et al. Transition to miscibility in linearly coupled binary dipolar Bose-Einstein condensates , 2010, 1009.1007.
[56] C. Wieman,et al. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.
[57] Jinbin Li,et al. Phase separation of a two-component dipolar Bose-Einstein condensate in the quasi-one-dimensional and quasi-two-dimensional regime , 2011, 1108.1329.
[58] Department of Physics,et al. Optical production of ultracold polar molecules. , 2005 .