A robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose-Einstein condensates

Abstract We present a robust and efficient numerical method to compute the dynamics of the rotating two-component dipolar Bose–Einstein condensates (BEC). Using the rotating Lagrangian coordinates transform (Bao et al., 2013), we reformulate the original coupled Gross–Pitaevskii equations (CGPE) into new equations where the rotating term vanishes and the potential becomes time-dependent. A time-splitting Fourier pseudospectral method is proposed to numerically solve the new equations where the nonlocal Dipole–Dipole Interactions (DDI) are computed by a newly-developed Gaussian-sum (GauSum) solver (Exl et al., 2016) which helps achieve spectral accuracy in space within O ( N log N ) operations ( N is the total number of grid points). The new method is spectrally accurate in space and second order accurate in time — these accuracies are confirmed numerically. Dynamical properties of some physical quantities, including the total mass, energy, center of mass and angular momentum expectation, are presented and confirmed numerically. Interesting dynamical phenomena that are peculiar to the rotating two-component dipolar BECs, such as dynamics of center of mass, quantized vortex lattices dynamics and the collapse dynamics in 3D, are presented.

[1]  H Jing,et al.  Spin-orbit-coupled dipolar Bose-Einstein condensates. , 2012, Physical review letters.

[2]  Vortex phase diagram in rotating two-component Bose-Einstein condensates. , 2003, Physical review letters.

[3]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[4]  Leslie Greengard,et al.  Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT , 2013, SIAM J. Sci. Comput..

[5]  L. You,et al.  Trapped condensates of atoms with dipole interactions , 2001 .

[6]  Yong Zhang,et al.  Accurate and efficient computation of nonlocal potentials based on Gaussian-sum approximation , 2015, J. Comput. Phys..

[7]  Yi Wang,et al.  Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity , 2010, 1011.1990.

[8]  Santos,et al.  Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.

[9]  L. You,et al.  Trapped atomic condensates with anisotropic interactions , 2000 .

[10]  Christophe Besse,et al.  High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations , 2016, J. Comput. Phys..

[11]  Dalibard,et al.  Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.

[12]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[13]  Luis E. Young-S.,et al.  Mixing, demixing, and structure formation in a binary dipolar Bose-Einstein condensate , 2012 .

[14]  Yong Zhang,et al.  On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions , 2015, J. Comput. Phys..

[15]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[16]  P. Markowich,et al.  NUMERICAL SIMULATION OF TRAPPED DIPOLAR QUANTUM GASES: COLLAPSE STUDIES AND VORTEX DYNAMICS , 2010 .

[17]  A. Fetter Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.

[18]  Weizhu Bao,et al.  Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT , 2014, J. Comput. Phys..

[19]  Masahito Ueda,et al.  Ferrofluidity in a two-component dipolar Bose-Einstein condensate. , 2008, Physical review letters.

[20]  Yanzhi Zhang,et al.  An efficient spectral method for computing dynamics of rotating two-component Bose-Einstein condensates via coordinate transformation , 2013, J. Comput. Phys..

[21]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[22]  M. Baranov,et al.  Theoretical progress in many-body physics with ultracold dipolar gases , 2008 .

[23]  P. Capuzzi,et al.  Structure of vortices in two-component Bose-Einstein condensates , 2001, cond-mat/0201563.

[24]  Weizhu Bao,et al.  Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.

[25]  Christof Sparber,et al.  On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.

[26]  Geneviève Dujardin,et al.  High Order Exponential Integrators for Nonlinear Schrödinger Equations with Application to Rotating Bose-Einstein Condensates , 2015, SIAM J. Numer. Anal..

[27]  A. M. Martin,et al.  Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.

[28]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[29]  S. Simon,et al.  Vortex lattices in rotating atomic bose gases with dipolar interactions. , 2005, Physical review letters.

[30]  N. R. Cooper,et al.  Vortex lattices in Bose-Einstein condensates with dipolar interactions beyond the weak-interaction limit , 2007 .

[31]  Hanquan Wang,et al.  A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates , 2007 .

[32]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[33]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[34]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[35]  C. A. Sackett,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [Phys. Rev. Lett. 75, 1687 (1995)] , 1997 .

[36]  Weizhu Bao,et al.  Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..

[37]  Yanzhi Zhang,et al.  Dynamics of rotating two-component Bose-Einstein condensates and its efficient computation , 2007 .

[38]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[39]  Haifeng Jiang,et al.  Exotic vortex lattices in a rotating binary dipolar Bose-Einstein condensate , 2016, Scientific Reports.

[40]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[41]  S. K. Adhikari,et al.  Statics and dynamics of a binary dipolar Bose–Einstein condensate soliton , 2014, 1401.3178.

[42]  Masahito Ueda,et al.  Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.

[43]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[44]  Jian Zhang,et al.  Vortex lattices in planar Bose-Einstein condensates with dipolar interactions. , 2005, Physical review letters.

[45]  R. Grimm,et al.  Bose-Einstein condensation of erbium. , 2012, Physical review letters.

[46]  M. Oktel,et al.  Vortex lattices in dipolar two-component Bose-Einstein condensates , 2014, 1402.1020.

[47]  Masahito Ueda,et al.  d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.

[48]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[49]  Weizhu Bao,et al.  Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT , 2015, 1504.02897.

[50]  Sitai Li,et al.  The numerical method for computing the ground state of the two-component dipolar Bose-Einstein condensate , 2013 .

[51]  Weizhu Bao,et al.  Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction , 2011 .

[52]  Hanquan Wang,et al.  Numerical Simulations on Stationary States for Rotating Two-Component Bose-Einstein Condensates , 2009, J. Sci. Comput..

[53]  Yu-ren Shi,et al.  Vortices of a rotating two-component dipolar Bose–Einstein condensate in an optical lattice , 2016 .

[54]  Yanzhi Zhang,et al.  A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..

[55]  B. Malomed,et al.  Transition to miscibility in linearly coupled binary dipolar Bose-Einstein condensates , 2010, 1009.1007.

[56]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[57]  Jinbin Li,et al.  Phase separation of a two-component dipolar Bose-Einstein condensate in the quasi-one-dimensional and quasi-two-dimensional regime , 2011, 1108.1329.

[58]  Department of Physics,et al.  Optical production of ultracold polar molecules. , 2005 .