Process intensification of reactive separator networks through the IDEAS conceptual framework

Abstract A method to rigorously identify the performance limits of a reactive separator network is presented in this paper. The quantification of the enhancement potential for a given technology can greatly benefit process intensification studies in the pursuit of radical improvements. The Infinite DimEnsionAl State-Space (IDEAS) conceptual framework is first reviewed and then shown to be capable of assessing the potential for process intensification of reactive separation processes. The IDEAS framework is employed to formulate an infinite linear program (ILP) that can synthesize optimal reactive separation networks, and establish rigorous tradeoffs between total network reactive holdup, and total network capacity. The proposed reactive separation process intensification method is demonstrated on a case study involving the metathesis of 2-pentene through reactive distillation. Significant intensification over prior designs is demonstrated.

[1]  Michael Baldea,et al.  From process integration to process intensification , 2015, Comput. Chem. Eng..

[2]  Michael F. Malone,et al.  Reactive distillation for methyl acetate production , 2003, Comput. Chem. Eng..

[3]  Kejin Huang,et al.  A generalized method for the synthesis and design of reactive distillation columns , 2012 .

[4]  Wen Zhou,et al.  Automating the AR construction for non-isothermal reactor networks , 2009, Comput. Chem. Eng..

[5]  Vasilios Manousiouthakis,et al.  IDEAS approach to the synthesis of globally optimal separation networks: application to chromium recovery from wastewater , 2003 .

[6]  Michael F. Doherty,et al.  Design method for kinetically controlled, staged reactive distillation columns , 1998 .

[7]  Efstratios N. Pistikopoulos,et al.  The interactions of design control and operability in reactive distillation systems , 2002 .

[8]  Michael F. Malone,et al.  Feasible products for kinetically controlled reactive distillation of ternary mixtures , 2000 .

[9]  S. Steinigeweg,et al.  Reactive Distillation , 2000 .

[10]  Vasilios Manousiouthakis,et al.  Attainable Composition, Energy Consumption, and Entropy Generation Properties for Isothermal/Isobaric Reactor Networks , 2013 .

[11]  Tom Van Gerven,et al.  Structure, energy, synergy, time - the fundamentals of Process Intensification , 2009 .

[12]  Michael F. Malone,et al.  Simulation of kinetic effects in reactive distillation , 2000 .

[13]  Wen Zhou,et al.  Non-ideal reactor network synthesis through IDEAS: Attainable region construction , 2006 .

[14]  William L. Luyben,et al.  Design and control of an olefin metathesis reactive distillation column , 2002 .

[15]  Jeffrey J. Siirola,et al.  Industrial Applications of Chemical Process Synthesis , 1996 .

[16]  Vasilios I. Manousiouthakis,et al.  Multi-feed attainable region construction using the Shrink–Wrap algorithm , 2008 .

[17]  Vasilios Manousiouthakis,et al.  Infinite-Dimensional State-Space (IDEAS) Approach to Globally Optimal Design of Distillation Networks Featuring Heat and Power Integration , 2004 .

[18]  Vasilios Manousiouthakis,et al.  Identification of the Attainable Region for Batch Reactor Networks , 2008 .

[19]  Jeffrey J. Siirola,et al.  Process synthesis prospective , 2004, Comput. Chem. Eng..

[20]  Vasilios Manousiouthakis,et al.  Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction , 2002 .

[21]  Wen Zhou,et al.  Pollution prevention through reactor network synthesis: the IDEAS approach , 2007 .

[22]  Ignacio E. Grossmann,et al.  A disjunctive programming approach for the optimal design of reactive distillation columns , 2001 .

[23]  Abdullah Tariq Alabdulhadi Infinite DimEnsionAl State-space as a Pricing Tool for Subsidized Energy Systems , 2017 .

[24]  On the attainable region for process networks , 2014 .

[25]  Hong Li,et al.  A fixed point methodology for the design of reactive distillation columns , 2016 .

[26]  Efstratios N. Pistikopoulos,et al.  Generalized modular representation framework for process synthesis , 1996 .

[27]  Vasilios Manousiouthakis,et al.  Global Capital/Total Annualized Cost Minimization of Homogeneous and Isothermal Reactor Networks , 2008 .

[28]  Michael F. Malone,et al.  Effect of kinetics on residue curve maps for reactive distillation , 1994 .

[29]  When Zhou,et al.  On dimensionality of attainable region construction for isothermal reactor networks , 2008, Comput. Chem. Eng..

[30]  A. I. Stankiewicz,et al.  Process Intensification: Transforming Chemical Engineering , 2000 .

[31]  Vasilios Manousiouthakis,et al.  Minimum entropy generation for isothermal endothermic/exothermic reactor networks , 2015 .

[32]  Vasilios I. Manousiouthakis,et al.  Global optimization of reactive distillation networks using IDEAS , 2004, Comput. Chem. Eng..

[33]  M. Doherty,et al.  The simple distillation of homogeneous reactive mixtures , 1988 .

[34]  G. J Harmsen Industrial best practices of conceptual process design , 2004 .

[35]  Vasilios Manousiouthakis,et al.  Globally Optimal Networks for Multipressure Distillation of Homogeneous Azeotropic Mixtures , 2012 .

[36]  F. H. Garner,et al.  Chemical Engineering , 1955, Nature.

[37]  Zayna Al-Husseini,et al.  IDEAS based synthesis of minimum volume reactor networks featuring residence time density/distribution models , 2014, Comput. Chem. Eng..

[38]  G. J. Harmsen,et al.  Reactive distillation: The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation , 2007 .

[39]  Separations Process Synthesis , 2006 .

[40]  Amy R. Ciric,et al.  Synthesis of nonequilibrium reactive distillation processes by MINLP optimization , 1994 .

[41]  Johan Grievink,et al.  Process intensification and process systems engineering: A friendly symbiosis , 2008, Comput. Chem. Eng..

[42]  Laureano Jiménez,et al.  Analysis of residue curve maps of reactive and extractive distillation units , 2001 .

[43]  G. Jan Reactive distillation: The front-runner of industrial process intensification A full review of commercial applications, research, scale-up, design and operation , 2007 .

[44]  Gavin Towler,et al.  Chemical engineering design : principles, practice, and economics of plant and process design , 2008 .

[45]  Larry A. Taylor,et al.  The Shrink-Wrap algorithm for the construction of the attainable region: an application of the IDEAS framework , 2004, Comput. Chem. Eng..

[46]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[47]  Vasilios Manousiouthakis,et al.  IDEAS approach to process network synthesis: minimum utility cost for complex distillation networks , 2002 .

[48]  Steinar Hauan,et al.  Using feasible regions to design and optimize reactive distillation columns with ideal VLE , 2006 .

[49]  Vasilios Manousiouthakis,et al.  Globally optimal power cycle synthesis via the Infinite-DimEnsionAl State-space (IDEAS) approach featuring minimum area with fixed utility , 2003 .

[50]  A. Stankiewicz Reactive separations for process intensification: an industrial perspective , 2003 .

[51]  Vasilios Manousiouthakis,et al.  IDEAS approach to process network synthesis: Application to multicomponent MEN , 2000 .

[52]  N. Schaible Minimum Entropy Generation in the Cardiovascular System , 2011 .

[53]  Vasilios Manousiouthakis,et al.  Variable density fluid reactor network synthesis—Construction of the attainable region through the IDEAS approach , 2007 .

[54]  Domingos Barbosa,et al.  Optimization of reactive distillation processes with simulated annealing , 2000 .

[55]  Yadollah Saboohi,et al.  Shortcut design of reactive distillation columns , 2012 .

[56]  Sebastian Engell,et al.  Design of memetic algorithms for the efficient optimization of chemical process synthesis problems with structural restrictions , 2015, Comput. Chem. Eng..

[57]  Vasilios Manousiouthakis,et al.  IDEAS Approach to Process Network Synthesis: Minimum Plate Area for Complex Distillation Networks with Fixed Utility Cost† , 2002 .