Active Learning for Classification With Abstention
暂无分享,去创建一个
[1] Yang Feng,et al. A survey on Neyman‐Pearson classification and suggestions for future research , 2016 .
[2] Peter L. Bartlett,et al. Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..
[3] Yves Grandvalet,et al. Support Vector Machines with a Reject Option , 2008, NIPS.
[4] Tara Javidi,et al. Active Learning for Binary Classification with Abstention , 2019, ArXiv.
[5] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[6] C. K. Chow,et al. On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.
[7] A. Tsybakov,et al. Fast learning rates for plug-in classifiers , 2007, 0708.2321.
[8] A. Tsybakov. On nonparametric estimation of density level sets , 1997 .
[9] Stanislav Minsker,et al. Plug-in Approach to Active Learning , 2011, J. Mach. Learn. Res..
[10] M. Wegkamp. Lasso type classifiers with a reject option , 2007, 0705.2363.
[11] Pietro Rubegni,et al. Automated diagnosis of pigmented skin lesions , 2002, International journal of cancer.
[12] Csaba Szepesvári,et al. –armed Bandits , 2022 .
[13] Robert D. Nowak,et al. Minimax Bounds for Active Learning , 2007, IEEE Transactions on Information Theory.
[14] Mohamed Hebiri,et al. Consistency of plug-in confidence sets for classification in semi-supervised learning , 2015, Journal of Nonparametric Statistics.
[15] Radu Herbei,et al. Classification with reject option , 2006 .
[16] C. K. Chow,et al. An optimum character recognition system using decision functions , 1957, IRE Trans. Electron. Comput..
[17] L. Cavalier. Nonparametric Estimation of Regression Level Sets , 1997 .
[18] Ming Yuan,et al. Classification Methods with Reject Option Based on Convex Risk Minimization , 2010, J. Mach. Learn. Res..
[19] Burr Settles,et al. Active Learning Literature Survey , 2009 .
[20] Xin Tong,et al. A plug-in approach to neyman-pearson classification , 2013, J. Mach. Learn. Res..
[21] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[22] Rémi Munos,et al. From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning , 2014, Found. Trends Mach. Learn..
[23] Sanjoy Dasgupta,et al. Coarse sample complexity bounds for active learning , 2005, NIPS.
[24] R. Handel. Probability in High Dimension , 2014 .
[25] Aurélien Garivier,et al. Explore First, Exploit Next: The True Shape of Regret in Bandit Problems , 2016, Math. Oper. Res..
[26] Tadeusz Pietraszek,et al. Optimizing abstaining classifiers using ROC analysis , 2005, ICML.
[27] Alexandra Carpentier,et al. Adaptivity to Noise Parameters in Nonparametric Active Learning , 2017, COLT.
[28] Adam D. Bull,et al. Adaptive-treed bandits , 2013, 1302.2489.
[29] Gábor Lugosi,et al. Introduction to Statistical Learning Theory , 2004, Advanced Lectures on Machine Learning.
[30] Eli Upfal,et al. Bandits and Experts in Metric Spaces , 2013, J. ACM.
[31] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[32] Aleksandrs Slivkins,et al. Multi-armed bandits on implicit metric spaces , 2011, NIPS.
[33] Mehryar Mohri,et al. Learning with Rejection , 2016, ALT.