Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).

[1]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[2]  P. Agris,et al.  Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. , 2000, Biochemistry.

[3]  C. Ehresmann,et al.  The crystal structure of HIV reverse-transcription primer tRNA(Lys,3) shows a canonical anticodon loop. , 2000, RNA.

[4]  E. Nikonowicz,et al.  Discriminating duplex and hairpin oligonucleotides using chemical shifts: application to the anticodon stem-loop of Escherichia coli tRNA(Phe). , 2000, Nucleic acids research.

[5]  C. Poulter,et al.  Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem-loop. , 2000, Biochemistry.

[6]  M. Hennig,et al.  Detection of N-H...N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. , 2000, Nucleic acids research.

[7]  J. Ofengand,et al.  Functional Effect of Deletion and Mutation of theEscherichia coli Ribosomal RNA and tRNA Pseudouridine Synthase RluA* , 1999, The Journal of Biological Chemistry.

[8]  S Thirup,et al.  The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. , 1999, Structure.

[9]  D. Davis,et al.  Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. , 1999, Journal of molecular biology.

[10]  E. Nikonowicz,et al.  NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. , 1998, Biochemistry.

[11]  M. O’Connor,et al.  tRNA imbalance promotes -1 frameshifting via near-cognate decoding. , 1998, Journal of molecular biology.

[12]  G. Björk,et al.  Structural alterations far from the anticodon of the tRNAProGGG of Salmonella typhimurium induce +1 frameshifting at the peptidyl-site. , 1997, Journal of molecular biology.

[13]  Y. Motorin,et al.  Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. , 1997, RNA.

[14]  M. Winkler,et al.  Regulation of Substrate Recognition by the MiaA tRNA Prenyltransferase Modification Enzyme of Escherichia coliK-12* , 1997, The Journal of Biological Chemistry.

[15]  P. Moore,et al.  On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. , 1997, Journal of molecular biology.

[16]  C. Poulter,et al.  Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme. , 1997, Biochemistry.

[17]  Gabriele Varani,et al.  NMR investigation of RNA structure , 1996 .

[18]  G. Varani,et al.  Structure of the P1 helix from group I self-splicing introns. , 1995, Journal of molecular biology.

[19]  A. Pardi,et al.  Improved measurement of 13C, 31P J coupling constants in isotopically labeled RNA , 1995, FEBS letters.

[20]  G. Björk,et al.  The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA , 1995, Journal of bacteriology.

[21]  M. Barciszewska,et al.  Glycine codon discrimination and the nucleotide in position 32 of the anticodon loop. , 1995, Journal of molecular biology.

[22]  Dieter Söll,et al.  Trna: Structure, Biosynthesis, and Function , 1995 .

[23]  L. Kay,et al.  NMR Experiments for the Measurement of Carbon Relaxation Properties in Highly Enriched, Uniformly 13C,15N-Labeled Proteins: Application to 13C.alpha. Carbons , 1994 .

[24]  Lance G. Laing,et al.  Stabilization of RNA structure by Mg ions. Specific and non-specific effects. , 1994, Journal of molecular biology.

[25]  L. Mueller,et al.  Through-bond correlation of adenine protons in a 13C-labeled ribozyme , 1994 .

[26]  A. Pardi,et al.  An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. , 1993, Journal of molecular biology.

[27]  L. Isaksson,et al.  UGA codon context which spans three codons. Reversal by ms2i6A37 in tRNA, mutation in rpsD(S4) or streptomycin. , 1993, Journal of molecular biology.

[28]  K. M. Harrington,et al.  In vitro analysis of translational rate and accuracy with an unmodified tRNA. , 1993, Biochemistry.

[29]  M. Barciszewska,et al.  The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[30]  P. Agris,et al.  The role of 5-methylcytidine in the anticodon arm of yeast tRNA(Phe): site-specific Mg2+ binding and coupled conformational transition in DNA analogs. , 1992, Biochemistry.

[31]  A. Pardi,et al.  Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. , 1992, Nucleic acids research.

[32]  J. Puglisi,et al.  Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. , 1992, Nucleic acids research.

[33]  G. Björk,et al.  tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3' of the codon. , 1991, Journal of molecular biology.

[34]  G. Björk,et al.  Role of tRNA modification in translational fidelity. , 1990, Biochimica et Biophysica Acta.

[35]  M. Winkler,et al.  Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12 , 1989, Journal of bacteriology.

[36]  C. Kurland,et al.  Effects of miaA on translation and growth rates , 1987, Molecular and General Genetics MGG.

[37]  V. Davisson,et al.  Phosphorylation of isoprenoid alcohols , 1986 .

[38]  L. Isaksson,et al.  Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy , 1986, Journal of bacteriology.

[39]  E. Westhof,et al.  Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Houssier,et al.  Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet. , 1985, Journal of biomolecular structure & dynamics.

[41]  J. Vacher,et al.  The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. , 1984, Journal of molecular biology.

[42]  E. A. Piper,et al.  The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. , 1984, The Biochemical journal.

[43]  B. Ames,et al.  Sequence specificity of tRNA-modifying enzymes. An analysis of 258 tRNA sequences. , 1983, Biochimica et biophysica acta.

[44]  P. Gallagher,et al.  The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli , 1983, Molecular and General Genetics MGG.

[45]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[46]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[47]  M. Gefter,et al.  Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. , 1969, Journal of molecular biology.

[48]  Henri Grosjean,et al.  Modification And Editing Of Rna , 1998 .

[49]  P. Agris,et al.  The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. , 1996, Progress in nucleic acid research and molecular biology.

[50]  A. Pardi Multidimensional heteronuclear NMR experiments for structure determination of isotopically labeled RNA. , 1995, Methods in enzymology.

[51]  G. Björk Biosynthesis and Function of Modified Nucleosides , 1995 .

[52]  G. Björk,et al.  Synthesis and function of isopentenyl adenosine derivatives in tRNA. , 1994, Biochimie.

[53]  J. Feigon,et al.  Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H-15N HSQC experiments , 1994, Journal of biomolecular NMR.

[54]  Mathias Sprinzl,et al.  Compilation of tRNA sequences and sequences of tRNA genes , 1993, Nucleic Acids Res..

[55]  David G. Gorenstein,et al.  Phosphorus-31 NMR : principles and applications , 1984 .

[56]  David Sankoff,et al.  The evolving trna molecul , 1981 .