On an Algorithm for the Solution of Generalized Prandtl Equations

The aim of this paper is to present and discuss an algorithm related to a numerical model, based on the modified quasi-interpolatory splines approximation, to solve generalized Prandtl integro-differential equations, with particular singular kernels.

[1]  Philip Rabinowitz,et al.  On the numerical solution of the generalized Prandtl equation using variation-diminishing splines , 1995 .

[2]  P. Rabinowitz Numerical integration based on approximating splines , 1990 .

[3]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[4]  Catterina Dagnino,et al.  Numerical integration based on quasi-interpolating splines , 1993, Computing.

[5]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[6]  Vittoria Demichelis,et al.  Quasi-interpolatory splines based on Schoenberg points , 1996, Math. Comput..

[7]  Franca Caliò,et al.  Integro-differential models: a program code , 2000 .

[8]  M. R. Capobianco,et al.  A fast algorithm for Prandtl's integro-differential equation , 1997 .

[9]  Catterina Dagnino,et al.  An algorithm for numerical integration based on quasi-interpolating splines , 1993, Numerical Algorithms.

[10]  V. Demichelis The use of modified quasi-interpolatory splines for the solution of the Prandtl equation , 1995 .

[11]  P. Rabinowitz Uniform convergence results for Cauchy principal value integrals , 1991 .

[12]  P. Rabinowitz Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .

[13]  Ayse Alaylioglu,et al.  Product integration of logarithmic singular integrands based on cubic splines , 1984 .

[14]  F. Caliò,et al.  An algorithm based on Q.I. modified splines for singular integral models , 2001 .