Unsupervised Detection of Argumentative Units though Topic Modeling Techniques

In this paper we present a new unsupervised approach, “Attraction to Topics” – A2T , for the detection of argumentative units, a sub-task of argument mining. Motivated by the importance of topic identification in manual annotation, we examine whether topic modeling can be used for performing unsupervised detection of argumentative sentences, and to what extend topic modeling can be used to classify sentences as claims and premises. Preliminary evaluation results suggest that topic information can be successfully used for the detection of argumentative sentences, at least for corpora used for evaluation. Our approach has been evaluated on two English corpora, the first of which contains 90 persuasive essays, while the second is a collection of 340 documents from user generated content.

[1]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL 2006.

[2]  Paolo Torroni,et al.  Argument Mining: A Machine Learning Perspective , 2015, TAFA.

[3]  Vincent Ng,et al.  Why are You Taking this Stance? Identifying and Classifying Reasons in Ideological Debates , 2014, EMNLP.

[4]  Paolo Torroni,et al.  Context-Independent Claim Detection for Argument Mining , 2015, IJCAI.

[5]  Fiona Browne,et al.  Applying Kernel Methods to Argumentation Mining , 2012, FLAIRS.

[6]  Chris Reed,et al.  Mining Arguments From 19th Century Philosophical Texts Using Topic Based Modelling , 2014, ArgMining@ACL.

[7]  Diane J. Litman,et al.  Extracting Argument and Domain Words for Identifying Argument Components in Texts , 2015, ArgMining@HLT-NAACL.

[8]  Iryna Gurevych,et al.  Argumentation Mining in User-Generated Web Discourse , 2016, CL.

[9]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[10]  Iryna Gurevych,et al.  Exploiting Debate Portals for Semi-Supervised Argumentation Mining in User-Generated Web Discourse , 2015, EMNLP.

[11]  Rada Mihalcea,et al.  TextRank: Bringing Order into Text , 2004, EMNLP.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  Klaus krippendorff,et al.  Measuring the Reliability of Qualitative Text Analysis Data , 2004 .

[14]  Diane J. Litman,et al.  Improving Argument Mining in Student Essays by Learning and Exploiting Argument Indicators versus Essay Topics , 2016, FLAIRS Conference.

[15]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[16]  Vangelis Karkaletsis,et al.  Argument Extraction from News, Blogs, and Social Media , 2014, SETN.

[17]  Vangelis Karkaletsis,et al.  Argument Extraction from News, Blogs, and the Social Web , 2015, Int. J. Artif. Intell. Tools.

[18]  Mitesh M. Khapra,et al.  Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection , 2015, EMNLP.

[19]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[20]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[21]  Marie-Francine Moens,et al.  Automatic detection of arguments in legal texts , 2007, ICAIL.

[22]  Pythagoras Karampiperis,et al.  Argument extraction for supporting public policy formulation , 2013, LaTeCH@ACL.

[23]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[24]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[25]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[26]  Noam Slonim,et al.  Context Dependent Claim Detection , 2014, COLING.

[27]  Vangelis Karkaletsis,et al.  Identifying Argument Components through TextRank , 2016, ArgMining@ACL.

[28]  Diane J. Litman,et al.  Context-aware Argumentative Relation Mining , 2016, ACL.

[29]  Iryna Gurevych,et al.  Parsing Argumentation Structures in Persuasive Essays , 2016, CL.

[30]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[31]  Silvana Castano,et al.  Exploratory analysis of textual data streams , 2017, Future Gener. Comput. Syst..

[32]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[33]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.