Synthesis and Properties of a Through-Space Interacting Diradicaloid

[1]  Jishan Wu Diradicaloids , 2022 .

[2]  Jishan Wu,et al.  π-Extended Doublet Open-Shell Graphene Fragments Exhibiting One-Dimensional Chain Stacking. , 2022, Journal of the American Chemical Society.

[3]  T. Kubo,et al.  Molecular and Spin Structures of a Through-Space Conjugated Triradical System. , 2022, Angewandte Chemie.

[4]  Xuesu Xiao,et al.  Aromatic Stacking Mediated Spin-Spin Coupling in Cyclophane-Assembled Diradicals. , 2021, Journal of the American Chemical Society.

[5]  H. Lischka,et al.  Unexpected Charge Effects Strengthen π–Stacking Pancake Bonding , 2021, JACS Au.

[6]  Yosuke Yamamoto,et al.  Synthesis and Physical Properties of Trioxotriangulene Having Methoxy and Hydroxy Groups at α-Positions: Electronic and Steric Effects of Substituent Groups and Intramolecular Hydrogen Bonds. , 2021, The Journal of organic chemistry.

[7]  Misaki Matsumoto,et al.  1,3-Diradicals Embedded in Curved Paraphenylene Units: Singlet versus Triplet State and In-Plane Aromaticity. , 2021, Journal of the American Chemical Society.

[8]  Wenping Hu,et al.  Stable Olympicenyl Radicals and Their π-Dimers. , 2020, Journal of the American Chemical Society.

[9]  R. Hoffmann,et al.  Do Diradicals Behave Like Radicals? , 2019, Chemical reviews.

[10]  M. Kertész Pancake Bonding: An Unusual Pi-Stacking Interaction. , 2018, Chemistry.

[11]  Y. Morita,et al.  Mixed valence salts based on carbon-centered neutral radical crystals , 2018, Communications Chemistry.

[12]  T. Takui,et al.  Trioxotriangulene: Air- and Thermally Stable Organic Carbon-Centered Neutral π-Radical without Steric Protection , 2018, Bulletin of the Chemical Society of Japan.

[13]  Justin C. Johnson,et al.  Physical Organic Chemistry of Quinodimethanes , 2018 .

[14]  M. Abe,et al.  Is π-Single Bonding (C–π–C) Possible? A Challenge in Organic Chemistry , 2017 .

[15]  Jishan Wu,et al.  Diradical approach toward organic near infrared dyes , 2016 .

[16]  L. Zakharov,et al.  Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals. , 2016, Nature chemistry.

[17]  M. Kertész,et al.  Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer. , 2016, Journal of the American Chemical Society.

[18]  K. Kanai,et al.  Stable Delocalized Singlet Biradical Hydrocarbon for Organic Field‐Effect Transistors , 2016 .

[19]  M. Kertész,et al.  Evidence of σ- and π-dimerization in a series of phenalenyls. , 2014, Journal of the American Chemical Society.

[20]  M. Nakano,et al.  One- and two-photon absorptions in open-shell singlet systems , 2012 .

[21]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[22]  Frank Neese,et al.  The ORCA program system , 2012 .

[23]  R. Haddon,et al.  Synthesis, crystal structure, and physical properties of sterically unprotected hydrocarbon radicals. , 2011, Journal of the American Chemical Society.

[24]  E. Canesi,et al.  Biradicaloid and Polyenic Character of Quinoidal Oligothiophenes Revealed by the Presence of a Low-Lying Double-Exciton State , 2010 .

[25]  Yong Tian,et al.  Is there a lower limit to the CC bonding distances in neutral radical pi-dimers? The case of phenalenyl derivatives. , 2010, Journal of the American Chemical Society.

[26]  M. Nakano,et al.  Remarkable two-photon absorption in open-shell singlet systems. , 2009, The Journal of chemical physics.

[27]  Y. Yoshida,et al.  Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities , 2007 .

[28]  M. Nakano,et al.  Strong two-photon absorption of singlet diradical hydrocarbons. , 2007, Angewandte Chemie.

[29]  R. Cimiraglia,et al.  New perspectives in multireference perturbation theory: the n-electron valence state approach , 2007 .

[30]  Joel S. Miller,et al.  Four-center carbon-carbon bonding. , 2007, Accounts of chemical research.

[31]  David W. Small,et al.  Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. , 2004, Journal of the American Chemical Society.

[32]  D. Cremer,et al.  Vibrational spectrum of m-benzyne: a matrix isolation and computational study. , 2002, Journal of the American Chemical Society.

[33]  W. C. Lineberger,et al.  Ultraviolet Photoelectron Spectroscopy of the o-, m-, and p- Benzyne Negative Ions. Electron Affinities and Singlet−Triplet Splittings for o -, m -, and p -Benzyne , 1998 .

[34]  E. Kraka,et al.  1,3‐Didehydrobenzene (m‐Benzyne) , 1996 .

[35]  Klaus Ruedenberg,et al.  Chemical deformation densities. 1. Principles and formulation of quantitative determination , 1989 .

[36]  K. Ruedenberg,et al.  Chemical deformation densities. 2. Small molecules , 1989 .

[37]  R. Zahradník,et al.  The Search for Highly Colored Organic Compounds , 1989 .

[38]  J. Koutecký,et al.  OCCUPATION NUMBERS OF NATURAL ORBITALS AS A CRITERION FOR BIRADICAL CHARACTER. DIFFERENT KINDS OF BIRADICALS , 1980 .

[39]  L. Salem Diradicals , 1973 .

[40]  J. Downing,et al.  Direct observation of a doubly excited state of pleiadene , 1972 .

[41]  K. Bowers,et al.  Anomalous paramagnetism of copper acetate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.