Dynamic yielding of single crystal Ta at strain rates of ∼5 × 105/s

A magnetic loading technique was used to produce planar ramp loading of [100] and [110] orientations of single crystal tantalum to peak stresses of either ∼18 or ∼86 GPa for applied plastic strain rates of about 2 × 106/s. It was found that the dynamic elastic limit varied only slightly for factor-of-2 changes in the resulting elastic strain rates near 5 × 105/s. For wave propagation in the [100] direction, the dynamic elastic limit varied from 4.18–3.92 GPa for corresponding sample thicknesses of 0.625–1.030 mm and exhibited a slight rate dependence for the strain rate region studied. For [110] compression, the elastic limit was essentially independent of propagation distance, but exhibited a significant sample-to-sample variation; the elastic limit for this orientation varied from 2.49–3.18 GPa over sample thicknesses of 0.702–1.023 mm, with an average and standard deviation for the data of 2.93 ± 0.27 GPa. There was no apparent rate dependence in this case for the strain rates examined.

[1]  G. Ravichandran,et al.  Constitutive modeling of textured body-centered-cubic (bcc) polycrystals , 1999 .

[2]  D. Steinberg,et al.  A constitutive model for metals applicable at high-strain rate , 1980 .

[3]  V. Vítek,et al.  Plastic anisotropy in b.c.c. transition metals , 1998 .

[4]  A. J. Cable,et al.  High-velocity impact phenomena , 1970 .

[5]  L. Chhabildas,et al.  Hugoniot and strength behavior of silicon carbide , 2006 .

[6]  William A. Stygar,et al.  Experimental configuration for isentropic compression of solids using pulsed magnetic loading , 2001 .

[7]  Gilbert W. Collins,et al.  Melting temperature of diamond at ultrahigh pressure , 2010 .

[8]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[9]  J. Mote,et al.  Shock‐Induced Dynamic Yielding in Copper Single Crystals , 1969 .

[10]  J. Asay,et al.  Effect of Impurity Clustering on Elastic Precursor Decay in LiF , 1972 .

[11]  Thomas P. Russell,et al.  Shock Compression of Condensed Matter , 2006 .

[12]  M. Knudson,et al.  Adiabatic release measurements in aluminum from 240-to500-GPa states on the principal Hugoniot , 2005 .

[13]  L. M. Barker HIGH-PRESSURE QUASI-ISENTROPIC IMPACT EXPERIMENTS**This work performed at Sandia National Laboratories supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789. , 1984 .

[14]  Y. Gupta,et al.  Strength and elastic deformation of natural and synthetic diamond crystals shock compressed along [100] , 2010 .

[15]  John B. Aidun,et al.  Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves , 1991 .

[16]  Y. Akahama,et al.  Diamond anvil Raman gauge in multimegabar pressure range , 2007 .

[17]  G. Peggs High pressure measurement techniques , 1983 .

[18]  G. Gray,et al.  Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression , 2008 .

[19]  Ronald W. Armstrong,et al.  Dislocation mechanics of copper and iron in high rate deformation tests , 2009 .

[20]  V. Vítek,et al.  Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling , 2004 .

[21]  J. Asay,et al.  Modeling of the elastic precursor behavior and dynamic inelasticity of tantalum under ramp wave loading to 17 GPa , 2010 .

[22]  G. Gray,et al.  Constitutive behavior of tantalum and tantalum-tungsten alloys , 1996 .

[23]  Elastic limit of x-cut quartz under shockless and shock wave compression: Loading rate dependence , 2009 .

[24]  M. H. Rice,et al.  Elastic‐Plastic Properties of Iron , 1963 .

[25]  David Rubin,et al.  Introduction to Continuum Mechanics , 2009 .

[26]  J. Asay,et al.  High-pressure strength of aluminum under quasi-isentropic loading , 2009 .

[27]  T. Jaglinski,et al.  Shockless compression of z-cut quartz to 7 GPa , 2009 .

[28]  Gilbert W. Collins,et al.  Stiff response of aluminum under ultrafast shockless compression to 110 GPA. , 2007, Physical review letters.

[29]  Mohsen Shahinpoor,et al.  High-Pressure Shock Compression of Solids III , 2011 .

[30]  Marcus D. Knudson,et al.  Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique , 2003 .

[31]  Tracy Vogler,et al.  Yield strength of tantalum for shockless compression to 18 GPa , 2009 .

[32]  Y. Gupta,et al.  Shock Waves in Condensed Matter , 1986 .

[33]  J. Asay,et al.  Modeling of the dynamic inelasticity of tantalum single crystal under ramp wave loading , 2011 .

[34]  J. Asay,et al.  Loading path and rate dependence of inelastic deformation: x-cut quartz , 2009 .

[35]  J. Asay,et al.  Compressive strength measurements in aluminum for shock compression over the stress range of 4-22 GPa , 2005 .

[36]  P. J. Maudlin,et al.  Effects of higher-order anisotropic elasticity using textured polycrystals in three-dimensional wave propagation problems , 1999 .

[37]  J. N. Johnson,et al.  Dislocation Dynamics and Single‐Crystal Constitutive Relations: Shock‐Wave Propagation and Precursor Decay , 1970 .

[38]  Marcus D. Knudson,et al.  Strength of lithium fluoride under shockless compression to 114 GPa , 2009 .

[39]  Frederick H. Streitz,et al.  High-pressure tailored compression: Controlled thermodynamic paths , 2005 .

[40]  R. F. Tinder,et al.  Effects of Point Defects on Elastic Precursor Decay in LiF , 1972 .

[41]  Gilbert W. Collins,et al.  Diamond at 800 GPa. , 2009, Physical review letters.

[42]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[43]  J. W. Swegle,et al.  Shock viscosity and the prediction of shock wave rise times , 1985 .

[44]  G. E. Duvall,et al.  Phase transitions under shock-wave loading , 1977 .

[45]  G. Ravichandran,et al.  Thermomechanical behavior of single crystalline tantalum in the static and dynamic regime , 2009 .

[46]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[47]  F. J. Humphreys Review Grain and subgrain characterisation by electron backscatter diffraction , 2001 .

[48]  F. Featherston,et al.  ELASTIC CONSTANTS OF TANTALUM, TUNGSTEN, AND MOLYBDENUM , 1963 .

[49]  M. Knudson,et al.  Continuous index of refraction measurements to 20 GPa in Z-cut sapphire , 2003 .

[50]  L. Chhabildas,et al.  Dynamic behavior of boron carbide , 2004 .

[51]  Jon H. Eggert,et al.  Large elastic wave amplitude and attenuation in shocked pure aluminum , 2009 .

[52]  Gilbert W. Collins,et al.  Strength effects in diamond under shock compression from 0.1 to 1 TPa , 2010 .

[53]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[54]  M. Baer,et al.  A compact strip-line pulsed power generator for isentropic compression experiments. , 2008, The Review of scientific instruments.

[55]  J. N. Fritz,et al.  CHAPTER VII – THE EQUATION OF STATE OF SOLIDS FROM SHOCK WAVE STUDIES , 1970 .