Structural operational semantics for stochastic and weighted transition systems

We introduce weighted GSOS, a general syntactic framework to specify well-behaved transition systems where transitions are equipped with weights coming from a commutative monoid. We prove that weighted bisimilarity is a congruence on systems defined by weighted GSOS specifications. We illustrate the flexibility of the framework by instantiating it to handle some special cases, most notably that of stochastic transition systems. Through examples we provide weighted-GSOS definitions for common stochastic operators in the literature.

[1]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[2]  Corrado Priami,et al.  Enhanced operational semantics , 1996, CSUR.

[3]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[4]  S. Gilmore,et al.  Automatically deriving ODEs from process algebra models of signalling pathways , 2005 .

[5]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[6]  Alan Bain Stochastic Calculus , 2007 .

[7]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[8]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[9]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[10]  Faron Moller,et al.  A Temporal Calculus of Communicating Systems , 1990, CONCUR.

[11]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[12]  J. Hillston The nature of synchronisation , 1994 .

[13]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[14]  Vladimiro Sassone,et al.  Structural Operational Semantics for Stochastic Process Calculi , 2008, FoSSaCS.

[15]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[16]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[17]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[18]  F. Bartels,et al.  On Generalised Coinduction and Probabilistic Specification Formats , 2004 .

[19]  Diego Latella,et al.  Rate-Based Transition Systems for Stochastic Process Calculi , 2009, ICALP.

[20]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[21]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1999, Theor. Comput. Sci..

[22]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[23]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[24]  Norbert Götz,et al.  Multiprocessor and Distributed System Design: The Integration of Functional Specification and Performance Analysis Using Stochastic Process Algebras , 1993, Performance/SIGMETRICS Tutorials.

[25]  Luca Cardelli,et al.  The Measurable Space of Stochastic Processes , 2010, 2010 Seventh International Conference on the Quantitative Evaluation of Systems.

[26]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[27]  Roberto Gorrieri,et al.  A Tutorial on EMPA: A Theory of Concurrent Processes with Nondeterminism, Priorities, Probabilities and Time , 1998, Theor. Comput. Sci..

[28]  Jane Hillston,et al.  Process algebras for quantitative analysis , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[29]  Corrado Priami Language-based Performance Prediction for Distributed and Mobile Systems , 2002, Inf. Comput..

[30]  Raheel Ahmad,et al.  The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..

[31]  Bartek Klin,et al.  Bialgebras for structural operational semantics: An introduction , 2011, Theor. Comput. Sci..

[32]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[33]  Bartek Klin,et al.  Structural Operational Semantics for Weighted Transition Systems , 2009, Semantics and Algebraic Specification.

[34]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.