Weak Gabor bi-frames on periodic subsets of the real line

In this paper, we introduce the concept of weak Gabor bi-frame (WGBF) in a general closed subspace ℳ of L2(ℝ). It is a generalization of Gabor bi-frame, and is new even if ℳ = L2(ℝ). A WGBF for ℳ contains all information of ℳ to some extent. Let a, b > 0, and S be an aℤ-periodic subset of ℝ with positive measure. This paper is devoted to characterizing WGBFs for L2(S) of the form 𝒢(g,a,b) = {e2πimbxg(x − na) : m,n ∈ ℤ}. It is well-known that, if S≠ℝ, the projections of Gabor frames for L2(ℝ) onto L2(S) cannot cover all Gabor frames for L2(S). This paper presents a Zak transform-domain and a time-domain characterization of WGBFs for L2(S). These characterizations are new even if S = ℝ. Some examples are also provided to illustrate the generality of our theory.

[1]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[2]  Yun-Zhang Li,et al.  Density results for Gabor systems associated with periodic subsets of the real line , 2009, J. Approx. Theory.

[3]  Yun-Zhang Li,et al.  Rational Time-frequency Gabor Frames associated with periodic Subsets of the Real Line , 2014, Int. J. Wavelets Multiresolution Inf. Process..

[4]  Hong Oh Kim,et al.  Compactly supported multiwindow dual Gabor frames of rational sampling density , 2013, Adv. Comput. Math..

[5]  Marcin Bownik,et al.  Tight frames of multidimensional wavelets , 1997 .

[6]  J. Gabardo,et al.  Oblique duals associated with rational subspace Gabor frames , 2008 .

[7]  H. Feichtinger,et al.  A First Survey of Gabor Multipliers , 2003 .

[8]  Deguang Han,et al.  Balian–Low phenomenon for subspace Gabor frames , 2004 .

[9]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[10]  Hans G. Feichtinger,et al.  Advances in Gabor Analysis , 2012 .

[11]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[12]  O. Christensen,et al.  Weyl-Heisenberg frames for subspaces of ²() , 2000 .

[13]  Nicki Holighaus,et al.  Theory, implementation and applications of nonstationary Gabor frames , 2011, J. Comput. Appl. Math..

[14]  Yan Zhang,et al.  Rational time-frequency multi-window subspace Gabor frames and their Gabor duals , 2014 .

[15]  Yan Zhang,et al.  Rational Time-frequency Vector-Valued Subspace Gabor Frames and Balian-Low Theorem , 2013, Int. J. Wavelets Multiresolution Inf. Process..

[16]  Y. Zeevi,et al.  Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .

[17]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[18]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[19]  Deguang Han,et al.  Lattice tiling and density conditions for subspace Gabor frames , 2013 .

[20]  T. Strohmer,et al.  Gabor Analysis and Algorithms , 2012 .

[21]  Deguang Han,et al.  The uniqueness of the dual of Weyl-Heisenberg subspace frames , 2004 .

[22]  Ole Christensen,et al.  Characterization and perturbation of Gabor frame sequences with rational parameters , 2007, J. Approx. Theory.

[23]  Jean-Pierre Gabardo,et al.  Subspace Weyl-Heisenberg frames , 2001 .

[24]  Deguang Han,et al.  The existence of tight Gabor duals for Gabor frames and subspace Gabor frames , 2009 .

[25]  Qiao-Fang Lian,et al.  Gabor frame sets for subspaces , 2011, Adv. Comput. Math..

[26]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.