Towards Approaching Total-Power-Capacity: Transmit and Decoding Power Minimization for LDPC Codes

Motivated by recently derived fundamental limits on total (transmit + decoding) power for coded communication, this paper investigates how close regular LDPC codes can get to these fundamental limits. For two decoding algorithms (Gallager-A and Gallager-B), we provide upper and lower bounds on the required decoding power based on models of parallelized decoding implementations. As the target error-probability is lowered to zero, we show that the transmit power must increase unboundedly in order to minimize total (transmit + decoding) power. Complementing our theoretical results, we develop detailed physical models of decoding implementations using rigorous (post-layout) circuit simulations, and use them to provide a framework to search for codes that may minimize total power. Our results show that approaching the total-power channel capacity requires increasing the complexity of both the code design and the corresponding decoding algorithm as the communication distance is increased, or as the target error-probability is lowered.

[1]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Lara Dolecek,et al.  Predicting error floors of structured LDPC codes: deterministic bounds and estimates , 2009, IEEE Journal on Selected Areas in Communications.

[4]  Chaitali Chakrabarti,et al.  A System Level Energy Model and Energy-Quality Evaluation for Integrated Transceiver Front-Ends , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[5]  David Blaauw,et al.  Theoretical and practical limits of dynamic voltage scaling , 2004, Proceedings. 41st Design Automation Conference, 2004..

[6]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[7]  C. Zarankiewicz On a problem of P. Turan concerning graphs , 1955 .

[8]  Boris Murmann,et al.  Power Dissipation Bounds for High-Speed Nyquist Analog-to-Digital Converters , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Pamela Youssef-Massaad Impact of Processing Energy on the Capacity of Wireless Channels , 2005 .

[10]  A. Hoorfar,et al.  INEQUALITIES ON THE LAMBERTW FUNCTION AND HYPERPOWER FUNCTION , 2008 .

[11]  Anant Sahai,et al.  Fundamental bounds on the interconnect complexity of decoder implementations , 2011, 2011 45th Annual Conference on Information Sciences and Systems.

[12]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[13]  J. Pach,et al.  Thirteen problems on crossing numbers , 2000 .

[14]  Frank R. Kschischang,et al.  Power Reduction Techniques for LDPC Decoders , 2008, IEEE Journal of Solid-State Circuits.

[15]  R. D. Gordon Values of Mills' Ratio of Area to Bounding Ordinate and of the Normal Probability Integral for Large Values of the Argument , 1941 .

[16]  Pulkit Grover,et al.  Energy-adaptive codes , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[17]  J. Thorpe Design of LDPC graphs for hardware implementation , 2002, Proceedings IEEE International Symposium on Information Theory,.

[18]  Dirk Stroobandt,et al.  The interpretation and application of Rent's rule , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[19]  Karthik Ganesan,et al.  Choosing “green” codes by simulation-based modeling of implementations , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[20]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  Martin J. Wainwright,et al.  An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors , 2010, IEEE Journal of Solid-State Circuits.

[23]  J. Yedidia,et al.  Construction of high-girth QC-LDPC codes , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[24]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[25]  Naresh R. Shanbhag,et al.  High-throughput LDPC decoders , 2003, IEEE Trans. Very Large Scale Integr. Syst..

[26]  H. T. Kung,et al.  The chip complexity of binary arithmetic , 1980, STOC '80.

[27]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[28]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[29]  Elwyn R. Berlekamp,et al.  A lower bound to the distribution of computation for sequential decoding , 1967, IEEE Trans. Inf. Theory.

[30]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[31]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[32]  Anant Sahai,et al.  Green codes: Energy-efficient short-range communication , 2008, 2008 IEEE International Symposium on Information Theory.

[33]  Luc Vandendorpe,et al.  Computing the word-, symbol-, and bit-error rates for block error-correcting codes , 2004, IEEE Transactions on Communications.

[34]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[35]  Florian Hug,et al.  Some voltage graph-based LDPC tailbiting codes with large girth , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[36]  Anant Sahai,et al.  Towards a Communication-Theoretic Understanding of System-Level Power Consumption , 2010, IEEE Journal on Selected Areas in Communications.

[37]  J.M.F. Moura,et al.  Structured LDPC codes for high-density recording: large girth and low error floor , 2006, IEEE Transactions on Magnetics.

[38]  David Declercq,et al.  Two-bit message passing decoders for LDPC codes over the binary symmetric channel , 2009, 2009 IEEE International Symposium on Information Theory.

[39]  Vladimir Stojanovic,et al.  Channel-limited high-speed links: modeling, analysis and design , 2005 .

[40]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[41]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[42]  Tong Zhang,et al.  Joint (3,k)-regular LDPC code and decoder/encoder design , 2004, IEEE Transactions on Signal Processing.

[43]  Dariush Divsalar,et al.  The Development of Turbo and LDPC Codes for Deep-Space Applications , 2007, Proceedings of the IEEE.

[44]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[45]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[46]  Joel H. Spencer,et al.  New Bounds on Crossing Numbers , 1999, SCG '99.

[47]  Richard J. Lipton,et al.  Lower bounds for VLSI , 1981, STOC '81.

[48]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[49]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[50]  Andrea J. Goldsmith,et al.  How far are LDPC codes from fundamental limits on total power consumption? , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[51]  Frank R. Kschischang,et al.  On the Energy Complexity of LDPC Decoder Circuits , 2015 .

[52]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[53]  William E. Donath,et al.  Placement and average interconnection lengths of computer logic , 1979 .

[54]  Clark D. Thompson VLSI design with multiple active layers , 1985 .

[55]  Robert M. Corless,et al.  A sequence of series for the Lambert W function , 1997, ISSAC.

[56]  Adnan Aziz,et al.  Synthesizing interconnect-efficient low density parity check codes , 2004, Proceedings. 41st Design Automation Conference, 2004..

[57]  Gilles Brassard,et al.  Fundamentals of Algorithmics , 1995 .

[58]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[59]  Anant Sahai,et al.  Time-division multiplexing for green broadcasting , 2009, 2009 IEEE International Symposium on Information Theory.

[60]  F. Leighton LAYOUT FOR THE SHUFFLE-EXCHANGE GRAPH AND LOWER BOUND TECHNIQUES FOR VLSI , 1982 .

[61]  Thomas A. DeMassa,et al.  Digital Integrated Circuits , 1985, 1985 IEEE GaAs IC Symposium Technical Digest.

[62]  Frank R. Kschischang,et al.  Energy Consumption of VLSI Decoders , 2014, IEEE Transactions on Information Theory.

[63]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[64]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.

[65]  Dongweon Yoon,et al.  On the general BER expression of one- and two-dimensional amplitude modulations , 2002, IEEE Trans. Commun..

[66]  L. Litwin,et al.  Error control coding , 2001 .

[67]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[68]  Andrea J. Goldsmith,et al.  Fundamental limits on the power consumption of encoding and decoding , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.