Integration of particle swarm optimization and genetic algorithm for dynamic clustering

Although the algorithms for cluster analysis are continually improving, most clustering algorithms still need to set the number of clusters. Thus, this study proposes a novel dynamic clustering approach based on particle swarm optimization (PSO) and genetic algorithm (GA) (DCPG) algorithm. The proposed DCPG algorithm can automatically cluster data by examining the data without a pre-specified number of clusters. The computational results of four benchmark data sets indicate that the DCPG algorithm has better validity and stability than the dynamic clustering approach based on binary-PSO (DCPSO) and the dynamic clustering approach based on GA (DCGA) algorithms. Furthermore, the DCPG algorithm is applied to cluster the bills of material (BOM) for the Advantech Company in Taiwan. The clustering results can be used to categorize products which share the same materials into clusters.

[1]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[2]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[3]  Josiane Zerubia,et al.  Fully unsupervised fuzzy clustering with entropy criterion , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[4]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[5]  Javier de Lope,et al.  Hybridizing evolutionary computation and reinforcement learning for the design of almost universal controllers for autonomous robots , 2009 .

[6]  Xiao-Jun Zeng,et al.  Generalized Regression Neural Networks With Multiple-Bandwidth Sharing and Hybrid Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[8]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[9]  Victor Trevino,et al.  Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm , 2010, Comput. Biol. Chem..

[10]  Li-Yeh Chuang,et al.  Improved binary PSO for feature selection using gene expression data , 2008, Comput. Biol. Chem..

[11]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[12]  Wenjun Zhang,et al.  Dissipative particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  R. J. Kuo,et al.  Application of Radial Basis Function Neural Network for Sales Forecasting , 2009, 2009 International Asia Conference on Informatics in Control, Automation and Robotics.

[14]  Y. Rahmat-Samii,et al.  Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[15]  Ling Wang,et al.  An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers , 2008, Comput. Oper. Res..

[16]  Chuangxin Guo,et al.  An improved particle swarm optimization algorithm for unit commitment , 2006 .

[17]  Xinzhi Liu,et al.  A Dynamic Clustering Algorithm Based on PSO and Its Application in Fuzzy Identification , 2006, 2006 International Conference on Intelligent Information Hiding and Multimedia.

[18]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[19]  Moncef Gabbouj,et al.  Fractional Particle Swarm Optimization in Multidimensional Search Space , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Genichi Taguchi,et al.  Taguchi's Quality Engineering Handbook , 2004 .

[21]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[22]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[24]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[26]  Kai Cao,et al.  A Learning Algorithm of Artificial Neural Network Based on GA - PSO , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[27]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[28]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[29]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[31]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[32]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[33]  Loris Nanni,et al.  Particle swarm optimization for prototype reduction , 2009, Neurocomputing.

[34]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[35]  Saul I. Gass,et al.  Erratum to "Cycling in linear programming problems" [Computers and Operations Research 31 (2002) 303-311] , 2006, Comput. Oper. Res..

[36]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[37]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[38]  Erwie Zahara,et al.  A hybrid genetic algorithm and particle swarm optimization for multimodal functions , 2008, Appl. Soft Comput..

[39]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[40]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[41]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  P. Richerson,et al.  Culture and the Evolutionary Process , 1988 .

[43]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[44]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[45]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[46]  Hosein Alizadeh,et al.  A New Method for Improving the Performance of K Nearest Neighbor using Clustering Technique , 2009, J. Convergence Inf. Technol..

[47]  Jong-Seok Lee,et al.  Data clustering by minimizing disconnectivity , 2011, Inf. Sci..

[48]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[49]  Li Junlin,et al.  Molecular dynamics-like data clustering approach , 2011 .

[50]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[51]  M. Senthil Arumugam,et al.  On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems , 2008, Appl. Soft Comput..

[52]  R. J. Kuo,et al.  Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering , 2010, Decis. Support Syst..

[53]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[54]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[55]  K. Huang,et al.  A synergistic automatic clustering technique (SYNERACT) for multispectral image Analysis , 2002 .

[56]  Ratna Babu Chinnam,et al.  mr2PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification , 2011, Inf. Sci..

[57]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .