Energy levels in semiconductor quantum wells

Abstract We discuss the electronic energy levels of three kinds of unusual quantum wells: the one-side doped Ga 1− x Al x AsGaAs, CdTeHgTe, and the GaSbInAs ones. In each case, we attempt to emphasize the salient features resulting from the hosts band line-ups and to discuss which genuine properties result from these features.

[1]  T. Ando Self-Consistent Results for a GaAs/AlxGa1-xAs Heterojunciton. II. Low Temperature Mobility , 1982 .

[2]  Schuurmans Mf,et al.  Simple calculations of confinement states in a quantum well. , 1985 .

[3]  M. Altarelli Electronic structure of two-dimensional semiconductor systems , 1985 .

[4]  Chang,et al.  Band mixing in semiconductor superlattices. , 1985, Physical review. B, Condensed matter.

[5]  E. Kane,et al.  Band structure of indium antimonide , 1957 .

[6]  Chang,et al.  Effects of quasi-interface states in HgTe-CdTe superlattices. , 1985, Physical review. B, Condensed matter.

[7]  G. Bastard,et al.  Magneto-optical investigations of a novel superlattice: HgTe-CdTe , 1983 .

[8]  L. Esaki,et al.  Three-dimensional character of semimetallic InAs-GaSb superlattices , 1981 .

[9]  Leroy L. Chang,et al.  Observation of double cyclotoron resonance and interband transitions in InAs-GaSb multi-heterojunctions , 1982 .

[10]  Leo Esaki,et al.  Observation of semiconductor‐semimetal transition in InAs‐GaSb superlattices , 1979 .

[11]  Yia-Chung Chang,et al.  HgTe‐CdTe superlattice band‐gap enhancement due to interdiffusion , 1985 .

[12]  Jagdeep Shah,et al.  Optical processes of 2D electron plasma in GaAs-(AlGa)As heterostructures , 1984 .

[13]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[14]  F. Fang,et al.  Negative Field-Effect Mobility on (100) Si Surfaces , 1966 .

[15]  G. Bastard,et al.  Theoretical investigations of superlattice band structure in the envelope-function approximation , 1982 .

[16]  L. Esaki,et al.  Quantized hall effect in single quantum wells of InAs , 1984 .

[17]  G. Bastard,et al.  Calculated temperature dependence of the band gap of HgTe‐CdTe superlattices , 1985 .

[18]  L. Esaki,et al.  Variational calculations on a quantum well in an electric field , 1983 .

[19]  Brum,et al.  Electric-field-induced dissociation of excitons in semiconductor quantum wells. , 1985, Physical review. B, Condensed matter.

[20]  Self-consistent calculations of electric subbands in p-type GaAlAs-GaAs heterojunctions , 1985 .

[21]  G. Bastard,et al.  Superlattice band structure in the envelope-function approximation , 1981 .

[22]  L. J. Sham,et al.  Effective masses of holes at GaAs-AlGaAs heterojunctions. , 1985, Physical Review B (Condensed Matter).

[23]  Massimo Altarelli,et al.  Electronic structure and semiconductor-semimetal transition in InAs-GaSb superlattices , 1983 .

[24]  S. Sivananthan,et al.  Molecular beam epitaxy of alloys and superlattices involving mercury , 1985 .

[25]  Leroy L. Chang,et al.  Cyclotron Resonance and Far-Infrared Magneto-Absorption Experiments on Semimetallic InAs-GaSb Superlattices, , 1980 .

[26]  L. J. Sham,et al.  Electronic Properties of Flat-Band Semiconductor Heterostructures , 1981 .

[27]  C. B. Duke,et al.  Space-Charge Effects on Electron Tunneling , 1966 .

[28]  G. Landwehr Application of high magnetic fields in semiconductor physics : proceedings of the international conference held in Grenoble, France, September 13-17, 1982 , 1983 .